Literature Help
CWH41 / YGL027C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 131
- Aliases
-
DER7
4
,
GLS1
7
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Freije BJ, et al. (2022) Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 35(2):326-336 PMID:35084835
- Qi Q, et al. (2020) Different Routes of Protein Folding Contribute to Improved Protein Production in Saccharomyces cerevisiae. mBio 11(6) PMID:33173005
- Castells-Ballester J, et al. (2019) Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. Int J Mol Sci 20(24) PMID:31835530
- Hossain TJ, et al. (2016) Structural Analysis of Free N-Glycans in α-Glucosidase Mutants of Saccharomyces cerevisiae: Lack of the Evidence for the Occurrence of Catabolic α-Glucosidase Acting on the N-Glycans. PLoS One 11(3):e0151891 PMID:27010459
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Shibuya A, et al. (2015) The Erv41-Erv46 complex serves as a retrograde receptor to retrieve escaped ER proteins. J Cell Biol 208(2):197-209 PMID:25583996
- Wang R, et al. (2015) Hyperproduction of β-Glucanase Exg1 Promotes the Bioconversion of Mogrosides in Saccharomyces cerevisiae Mutants Defective in Mannoprotein Deposition. J Agric Food Chem 63(47):10271-9 PMID:26549048
- Barker MK and Rose DR (2013) Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J Biol Chem 288(19):13563-74 PMID:23536181
- Chantret I, et al. (2011) Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J Biol Chem 286(48):41786-41800 PMID:21979948
- Deguchi E and Koumoto K (2011) Cellular zwitterionic metabolite analogs simultaneously enhance reaction rate, thermostability, salt tolerance, and substrate specificity of α-glucosidase. Bioorg Med Chem 19(10):3128-34 PMID:21524914
- Faridmoayer A and Scaman CH (2007) Truncations and functional carboxylic acid residues of yeast processing alpha-glucosidase I. Glycoconj J 24(8):429-37 PMID:17458696
- Faridmoayer A and Scaman CH (2005) Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I. Glycobiology 15(12):1341-8 PMID:16014748
- Faridmoayer A and Scaman CH (2004) An improved purification procedure for soluble processing alpha-glucosidase I from Saccharomyces cerevisiae overexpressing CWH41. Protein Expr Purif 33(1):11-8 PMID:14680956
- Hitt R and Wolf DH (2004) DER7, encoding alpha-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4(8):815-20 PMID:15450188
- Dhanawansa R, et al. (2002) Overexpression, purification, and partial characterization of Saccharomyces cerevisiae processing alpha glucosidase I. Glycobiology 12(3):229-34 PMID:11971867
- Lee DS and Lee SH (2001) Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor. FEBS Lett 501(1):84-6 PMID:11457461
- Simon I, et al. (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106(6):697-708 PMID:11572776
- Abeijon C and Chen LY (1998) The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall beta-1,6-glucan is indirect. Mol Biol Cell 9(10):2729-38 PMID:9763440
- Shahinian S, et al. (1998) Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae. Genetics 149(2):843-56 PMID:9611196
- Simons JF, et al. (1998) Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17(2):396-405 PMID:9430631
- Romero PA, et al. (1997) The yeast CWH41 gene encodes glucosidase I. Glycobiology 7(7):997-1004 PMID:9363442
- Jiang B, et al. (1996) CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 178(4):1162-71 PMID:8576053
- Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A 92(5):1287-91 PMID:7877969
- Ram AF, et al. (1994) A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10(8):1019-30 PMID:7992502
- Ballou L, et al. (1986) A mutation that prevents glucosylation of the lipid-linked oligosaccharide precursor leads to underglycosylation of secreted yeast invertase. Proc Natl Acad Sci U S A 83(10):3081-5 PMID:3517849
- Esmon B, et al. (1984) Early steps in processing of yeast glycoproteins. J Biol Chem 259(16):10322-7 PMID:6381483
- Tsai PK, et al. (1984) Isolation of glucose-containing high-mannose glycoprotein core oligosaccharides. Proc Natl Acad Sci U S A 81(20):6340-3 PMID:6387703
- Saunier B, et al. (1982) Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem 257(23):14155-61 PMID:6216253
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Zou L, et al. (2025) Identification and characterization of a prokaryotic Mannosyl-oligosaccharide Glucosidase (MOGS) and establishment of a functional complementation assay for MOGS activity. Biochem Biophys Res Commun 778:152331 PMID:40674822
- Schulze Y, et al. (2023) Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity. Metallomics 15(6) PMID:37193668
- Gupta SJ, et al. (2017) Synthesis, in vitro evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α-glucosidase. Bioorg Chem 72:11-20 PMID:28346871
- Aguiar TQ, et al. (2013) Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway. Carbohydr Res 381:19-27 PMID:24056010
- Harada Y, et al. (2013) Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. J Biol Chem 288(45):32673-32684 PMID:24062310
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- Bastos de Oliveira FM, et al. (2012) Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 31(7):1798-810 PMID:22333912
- Kurita T, et al. (2012) Action of multiple endoplasmic reticulum chaperon-like proteins is required for proper folding and polarized localization of Kre6 protein essential in yeast cell wall β-1,6-glucan synthesis. J Biol Chem 287(21):17415-17424 PMID:22447934
- Yibmantasiri P, et al. (2012) Molecular basis for fungicidal action of neothyonidioside, a triterpene glycoside from the sea cucumber, Australostichopus mollis. Mol Biosyst 8(3):902-12 PMID:22271309
- Bircham PW, et al. (2011) Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol Biosyst 7(9):2589-98 PMID:21731954
- Gandy MN, et al. (2011) A general method for affinity-based proteomic profiling of exo-α-glycosidases. Chem Commun (Camb) 47(17):5037-9 PMID:21431156
- Schmidt S, et al. (2011) Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 77(5):1751-7 PMID:21216897
- Quinn RP, et al. (2009) A novel role for Gtb1p in glucose trimming of N-linked glycans. Glycobiology 19(12):1408-16 PMID:19542522
- Deshpande N, et al. (2008) Protein glycosylation pathways in filamentous fungi. Glycobiology 18(8):626-37 PMID:18504293
- Herrero AB, et al. (2008) Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res 68(23):9779-87 PMID:19047157
- Mora-Montes HM, et al. (2007) Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6(12):2184-93 PMID:17933909
- Tagwerker C, et al. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5(4):737-48 PMID:16432255
- Gardocki ME, et al. (2005) Genomic analysis of PIS1 gene expression. Eukaryot Cell 4(3):604-14 PMID:15755922
- Schuldiner M, et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507-19 PMID:16269340
- Tomich CH, et al. (2005) Homology modeling and molecular interaction field studies of alpha-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors. J Comput Aided Mol Des 19(2):83-92 PMID:16075303
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Poirey R, et al. (2002) Functional analysis of the Saccharomyces cerevisiae DUP240 multigene family reveals membrane-associated proteins that are not essential for cell viability. Microbiology (Reading) 148(Pt 7):2111-2123 PMID:12101299
- Cipollo JF and Trimble RB (2000) The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Deltaalg9 mutant reveals a regulatory role for the Alg3p alpha1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J Biol Chem 275(6):4267-77 PMID:10660594
- Bickle M, et al. (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17(8):2235-45 PMID:9545237
- Verostek MF, et al. (1993) Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. I. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum. J Biol Chem 268(16):12095-103 PMID:8505333
- Alvarado E, et al. (1990) Localization of alpha 1----3-linked mannoses in the N-linked oligosaccharides of Saccharomyces cerevisiae mnn mutants. Biochemistry 29(10):2471-82 PMID:2185827
- Runge KW and Robbins PW (1986) A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J Biol Chem 261(33):15582-90 PMID:3536907
Reviews
No reviews curated.
Download References (.nbib)
- Ribeiro RA, et al. (2022) The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 13:953479 PMID:35966694
- Ninagawa S, et al. (2021) Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 1865(3):129812 PMID:33316349
- Berner N, et al. (2018) Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 87:751-782 PMID:29394096
- Neubert P and Strahl S (2016) Protein O-mannosylation in the early secretory pathway. Curr Opin Cell Biol 41:100-8 PMID:27161930
- Perez-Linero AM and Muñiz M (2015) Membrane trafficking: returning to the fold(ER). Curr Biol 25(7):R288-90 PMID:25829015
- Suzuki T and Harada Y (2014) Non-lysosomal degradation pathway for N-linked glycans and dolichol-linked oligosaccharides. Biochem Biophys Res Commun 453(2):213-9 PMID:24866240
- Delic M, et al. (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37(6):872-914 PMID:23480475
- Teparić R and Mrsa V (2013) Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr Genet 59(4):171-85 PMID:23959528
- Hou J, et al. (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491-510 PMID:22533807
- Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775-818 PMID:23135325
- Smolka MB, et al. (2012) The checkpoint transcriptional response: make sure to turn it off once you are satisfied. Cell Cycle 11(17):3166-74 PMID:22895177
- Roth J, et al. (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30(6):497-506 PMID:21340671
- Ruiz-Herrera J and Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10(3):225-43 PMID:19891730
- Christis C, et al. (2008) Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 275(19):4700-27 PMID:18680510
- Jigami Y (2008) Yeast glycobiology and its application. Biosci Biotechnol Biochem 72(3):637-48 PMID:18323647
- Kanehara K, et al. (2007) The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev Biol 18(6):743-50 PMID:17945519
- Lesage G and Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(2):317-43 PMID:16760306
- Herscovics A (1999) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426(2):275-85 PMID:9878780
- Herscovics A and Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7(6):540-50 PMID:8472892
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Faridmoayer A and Scaman CH (2004) An improved purification procedure for soluble processing alpha-glucosidase I from Saccharomyces cerevisiae overexpressing CWH41. Protein Expr Purif 33(1):11-8 PMID:14680956
- Simons JF, et al. (1998) Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17(2):396-405 PMID:9430631
- Romero PA, et al. (1997) The yeast CWH41 gene encodes glucosidase I. Glycobiology 7(7):997-1004 PMID:9363442
- Jiang B, et al. (1996) CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 178(4):1162-71 PMID:8576053
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Zou L, et al. (2025) Identification and characterization of a prokaryotic Mannosyl-oligosaccharide Glucosidase (MOGS) and establishment of a functional complementation assay for MOGS activity. Biochem Biophys Res Commun 778:152331 PMID:40674822
- Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A 92(5):1287-91 PMID:7877969
- Ram AF, et al. (1994) A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10(8):1019-30 PMID:7992502
Disease Literature
Paper(s) associated with one or more pieces of disease evidence in SGD, as found on the Disease page.
No disease literature curated.
Download References (.nbib)
- Zou L, et al. (2025) Identification and characterization of a prokaryotic Mannosyl-oligosaccharide Glucosidase (MOGS) and establishment of a functional complementation assay for MOGS activity. Biochem Biophys Res Commun 778:152331 PMID:40674822
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Filali-Mouncef Y, et al. (2024) An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 20(10):2323-2337 PMID:38958087
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Freije BJ, et al. (2022) Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 35(2):326-336 PMID:35084835
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Decourty L, et al. (2021) Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Res 49(15):8535-8555 PMID:34358317
- Wong AKO, et al. (2021) Ist2 recruits the lipid transporters Osh6/7 to ER-PM contacts to maintain phospholipid metabolism. J Cell Biol 220(9) PMID:34259806
- Keiser KJ and Barlowe C (2020) Molecular dissection of the Erv41-Erv46 retrograde receptor reveals a conserved cysteine-rich region in Erv46 required for retrieval activity. Mol Biol Cell 31(3):209-220 PMID:31825724
- Schoppe J, et al. (2020) AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 39(20):e105117 PMID:32840906
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Shibuya A, et al. (2015) The Erv41-Erv46 complex serves as a retrograde receptor to retrieve escaped ER proteins. J Cell Biol 208(2):197-209 PMID:25583996
- Leung GP, et al. (2014) Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae. G3 (Bethesda) 4(6):1059-69 PMID:24700328
- Surma MA, et al. (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519-30 PMID:23891562
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Kurita T, et al. (2012) Action of multiple endoplasmic reticulum chaperon-like proteins is required for proper folding and polarized localization of Kre6 protein essential in yeast cell wall β-1,6-glucan synthesis. J Biol Chem 287(21):17415-17424 PMID:22447934
- Louie RJ, et al. (2012) A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis. Genome Med 4(12):103 PMID:23270647
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Bircham PW, et al. (2011) Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol Biosyst 7(9):2589-98 PMID:21731954
- Boettner DR, et al. (2011) Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 22(19):3699-714 PMID:21849475
- Finnigan GC, et al. (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187(3):771-83 PMID:21196517
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Vembar SS, et al. (2010) J domain co-chaperone specificity defines the role of BiP during protein translocation. J Biol Chem 285(29):22484-94 PMID:20430885
- Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Miller JP, et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102(34):12123-8 PMID:16093310
- Schuldiner M, et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507-19 PMID:16269340
- Hitt R and Wolf DH (2004) DER7, encoding alpha-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4(8):815-20 PMID:15450188
- Lesage G, et al. (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167(1):35-49 PMID:15166135
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Chen EJ and Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161(2):333-47 PMID:12719473
- Schmelzle T, et al. (2002) Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 22(5):1329-39 PMID:11839800
- Abeijon C and Chen LY (1998) The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall beta-1,6-glucan is indirect. Mol Biol Cell 9(10):2729-38 PMID:9763440
- Bickle M, et al. (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17(8):2235-45 PMID:9545237
- Simons JF, et al. (1998) Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17(2):396-405 PMID:9430631
- Jiang B, et al. (1996) CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 178(4):1162-71 PMID:8576053
- Runge KW and Robbins PW (1986) A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J Biol Chem 261(33):15582-90 PMID:3536907
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Functional Complementation Annotations Literature
Paper(s) associated with one or more pieces of functional complementation annotations evidence in SGD.
No functional complementation annotations literature curated.
Download References (.nbib)
- Zou L, et al. (2025) Identification and characterization of a prokaryotic Mannosyl-oligosaccharide Glucosidase (MOGS) and establishment of a functional complementation assay for MOGS activity. Biochem Biophys Res Commun 778:152331 PMID:40674822
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Schulze Y, et al. (2023) Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity. Metallomics 15(6) PMID:37193668
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Chen X, et al. (2020) FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 11(1):867 PMID:32054832
- Zatorska E, et al. (2017) Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 18(6) PMID:28598353
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
- Krol K, et al. (2015) A genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells. PLoS One 10(3):e0120702 PMID:25756177
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Hoshida H, et al. (2013) N-Glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(12):5473-82 PMID:23306636
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Servienė E, et al. (2012) Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS One 7(12):e50779 PMID:23227207
- Yibmantasiri P, et al. (2012) Molecular basis for fungicidal action of neothyonidioside, a triterpene glycoside from the sea cucumber, Australostichopus mollis. Mol Biosyst 8(3):902-12 PMID:22271309
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Burston HE, et al. (2009) Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 185(6):1097-110 PMID:19506040
- Carroll SY, et al. (2009) A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 17(4):552-60 PMID:19853568
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Herrero AB, et al. (2008) Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res 68(23):9779-87 PMID:19047157
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Butcher RA, et al. (2006) Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2(2):103-9 PMID:16415861
- Kawahata M, et al. (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924-36 PMID:16911514
- Dudley AM, et al. (2005) A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1:2005.0001 PMID:16729036
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549