Literature Help
LCD1 / YDR499W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 225
- Aliases
-
PIE1
2
,
DDC2
5
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Yates LA, et al. (2023) A DNA damage-induced phosphorylation circuit enhances Mec1ATR Ddc2ATRIP recruitment to Replication Protein A. Proc Natl Acad Sci U S A 120(14):e2300150120 PMID:36996117
- Ahmad S, et al. (2021) Antagonistic relationship of NuA4 with the non-homologous end-joining machinery at DNA damage sites. PLoS Genet 17(9):e1009816 PMID:34543274
- Galati E, et al. (2021) VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 49(22):12785-12804 PMID:34871443
- Tannous EA, et al. (2021) Mechanism of auto-inhibition and activation of Mec1ATR checkpoint kinase. Nat Struct Mol Biol 28(1):50-61 PMID:33169019
- Usui T and Shinohara A (2021) Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 9:635383 PMID:33842461
- Forey R, et al. (2020) Mec1 Is Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA Replication. Mol Cell 78(3):396-410.e4 PMID:32169162
- Li K, et al. (2020) Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proc Natl Acad Sci U S A 117(35):21354-21363 PMID:32817543
- Biswas H, et al. (2019) Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. PLoS Genet 15(8):e1008294 PMID:31369547
- Memisoglu G, et al. (2019) Mec1ATR Autophosphorylation and Ddc2ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling. Cell Rep 28(4):1090-1102.e3 PMID:31340146
- Deshpande I, et al. (2017) Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage. Mol Cell 68(2):431-445.e5 PMID:29033322
- Wang X, et al. (2017) 3.9 Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP. Science 358(6367):1206-1209 PMID:29191911
- Sawicka M, et al. (2016) The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization. J Biol Chem 291(26):13436-47 PMID:27129217
- Wang SH, et al. (2015) Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity. PLoS One 10(7):e0134110 PMID:26218133
- Bandhu A, et al. (2014) Ddc2 mediates Mec1 activation through a Ddc1- or Dpb11-independent mechanism. PLoS Genet 10(2):e1004136 PMID:24586187
- Chen YH, et al. (2013) DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of Smc6 mutants. Mol Biol Cell 24(15):2431-41 PMID:23783034
- Manfrini N, et al. (2012) G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. Mol Cell Biol 32(24):4971-85 PMID:23045388
- Psakhye I and Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151(4):807-820 PMID:23122649
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Refolio E, et al. (2011) The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. J Cell Sci 124(Pt 14):2488-500 PMID:21693576
- Bazzi M, et al. (2010) Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication. Mol Cell Biol 30(1):131-45 PMID:19884341
- Janke R, et al. (2010) A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res 38(7):2302-13 PMID:20061370
- Vidanes GM, et al. (2010) CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation. PLoS Biol 8(1):e1000286 PMID:20126259
- Pagès V, et al. (2009) Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes Dev 23(12):1438-49 PMID:19528320
- Tittel-Elmer M, et al. (2009) The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28(8):1142-56 PMID:19279665
- Baldo V, et al. (2008) Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response. Mol Cell Biol 28(1):358-75 PMID:17954565
- Barlow JH, et al. (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30(1):73-85 PMID:18406328
- Bonilla CY, et al. (2008) Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell 30(3):267-76 PMID:18471973
- Chen CC, et al. (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134(2):231-43 PMID:18662539
- Mordes DA, et al. (2008) Dpb11 activates the Mec1-Ddc2 complex. Proc Natl Acad Sci U S A 105(48):18730-4 PMID:19028869
- Mordes DA, et al. (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22(11):1478-89 PMID:18519640
- Razidlo DF and Lahue RS (2008) Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 7(4):633-40 PMID:18321795
- Shimada K, et al. (2008) Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol 18(8):566-75 PMID:18406137
- Zierhut C and Diffley JF (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27(13):1875-85 PMID:18511906
- Ball HL, et al. (2007) Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol Cell Biol 27(9):3367-77 PMID:17339343
- Dubrana K, et al. (2007) The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast. J Cell Sci 120(Pt 23):4209-20 PMID:18003698
- Grandin N and Charbonneau M (2007) Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Res 35(3):822-38 PMID:17202155
- Grenon M, et al. (2007) Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. Yeast 24(2):105-19 PMID:17243194
- Kanoh Y, et al. (2006) Different requirements for the association of ATR-ATRIP and 9-1-1 to the stalled replication forks. Gene 377:88-95 PMID:16753272
- Majka J, et al. (2006) The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24(6):891-901 PMID:17189191
- Toh GW, et al. (2006) Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 5(6):693-703 PMID:16650810
- Archambault V, et al. (2005) Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol Cell Biol 25(15):6707-21 PMID:16024805
- Nakada D, et al. (2005) Role of the C terminus of Mec1 checkpoint kinase in its localization to sites of DNA damage. Mol Biol Cell 16(11):5227-35 PMID:16148046
- Wysocki R, et al. (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25(19):8430-43 PMID:16166626
- Bartrand AJ, et al. (2004) DNA stimulates Mec1-mediated phosphorylation of replication protein A. J Biol Chem 279(25):26762-7 PMID:15078888
- Gibson DG, et al. (2004) Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 24(23):10208-22 PMID:15542831
- Lee SJ, et al. (2004) A Ddc2-Rad53 fusion protein can bypass the requirements for RAD9 and MRC1 in Rad53 activation. Mol Biol Cell 15(12):5443-55 PMID:15456903
- Lin J, et al. (2004) Mutant telomere sequences lead to impaired chromosome separation and a unique checkpoint response. Mol Biol Cell 15(4):1623-34 PMID:14742705
- Lucca C, et al. (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23(6):1206-13 PMID:14647447
- Pan X, et al. (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16(3):487-96 PMID:15525520
- Tercero JA, et al. (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11(5):1323-36 PMID:12769855
- Enomoto S, et al. (2002) MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol Biol Cell 13(8):2626-38 PMID:12181334
- Rouse J and Jackson SP (2002) Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol Cell 9(4):857-69 PMID:11983176
- Clerici M, et al. (2001) Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO J 20(22):6485-98 PMID:11707419
- Melo JA, et al. (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15(21):2809-21 PMID:11691833
- Myung K, et al. (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104(3):397-408 PMID:11239397
- Paciotti V, et al. (2001) Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol Cell Biol 21(12):3913-25 PMID:11359899
- Wakayama T, et al. (2001) Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 21(3):755-64 PMID:11154263
- Jensen TH, et al. (2000) Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling. Mol Cell Biol 20(21):8047-58 PMID:11027275
- Paciotti V, et al. (2000) The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 14(16):2046-59 PMID:10950868
- Rouse J and Jackson SP (2000) LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 19(21):5801-12 PMID:11060031
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Leu YL, et al. (2024) Increasing DNA damage sensitivity through corylin-mediated inhibition of homologous recombination. Biomed Pharmacother 176:116864 PMID:38865847
- Li BZ, et al. (2024) Identification of different classes of genome instability suppressor genes through analysis of DNA damage response markers. G3 (Bethesda) 14(6) PMID:38526099
- Ahmad S, et al. (2021) DNA Damage-Induced Phosphorylation of Histone H2A at Serine 15 Is Linked to DNA End Resection. Mol Cell Biol 41(12):e0005621 PMID:34570618
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Schmidt TT, et al. (2020) Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res 48(1):264-277 PMID:31647103
- Bantele SCS, et al. (2019) Quantitative sensing and signalling of single-stranded DNA during the DNA damage response. Nat Commun 10(1):944 PMID:30808869
- Sau S, et al. (2019) The Yeast PCNA Unloader Elg1 RFC-Like Complex Plays a Role in Eliciting the DNA Damage Checkpoint. mBio 10(3) PMID:31186330
- Waterman DP, et al. (2019) Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 15(3):e1008001 PMID:30822309
- Wu T, et al. (2019) Preparation of endogenous TopBP1/Dpb11 and effect on central checkpoint kinase Mec1- Ddc2 (human ATR-ATRIP homolog). Biochem Biophys Res Commun 517(2):291-296 PMID:31349966
- Oh J, et al. (2018) Xrs2 and Tel1 Independently Contribute to MR-Mediated DNA Tethering and Replisome Stability. Cell Rep 25(7):1681-1692.e4 PMID:30428339
- Seeber A, et al. (2014) Remodelers move chromatin in response to DNA damage. Cell Cycle 13(6):877-8 PMID:24552812
- Kozmin SG and Jinks-Robertson S (2013) The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells. Genetics 193(3):803-17 PMID:23307894
- Seeber A, et al. (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27(18):1999-2008 PMID:24029917
- Berens TJ and Toczyski DP (2012) Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell 23(6):1058-67 PMID:22298423
- Douglas AC, et al. (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2(10):1279-89 PMID:23050238
- Silva S, et al. (2012) Live cell microscopy of DNA damage response in Saccharomyces cerevisiae. Methods Mol Biol 920:433-43 PMID:22941621
- Eckert-Boulet N, et al. (2011) Cell biology of homologous recombination in yeast. Methods Mol Biol 745:523-36 PMID:21660714
- Robert T, et al. (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471(7336):74-79 PMID:21368826
- Svensson JP, et al. (2011) Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC Syst Biol 5:157 PMID:21978764
- Yeung M and Durocher D (2011) Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin. DNA Repair (Amst) 10(12):1213-22 PMID:21982442
- Donnianni RA, et al. (2010) Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway. PLoS Genet 6(1):e1000763 PMID:20098491
- Chen SH and Zhou H (2009) Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1. J Biol Chem 284(28):18593-604 PMID:19457865
- Enserink JM, et al. (2009) Cdc28/Cdk1 positively and negatively affects genome stability in S. cerevisiae. J Cell Biol 185(3):423-37 PMID:19398760
- Anderson CM, et al. (2008) Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break. Genes Dev 22(7):854-9 PMID:18334620
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cartagena-Lirola H, et al. (2008) Role of the Saccharomyces cerevisiae Rad53 checkpoint kinase in signaling double-strand breaks during the meiotic cell cycle. Mol Cell Biol 28(14):4480-93 PMID:18505828
- Choi DH, et al. (2008) The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the lethality of rad53 and lcd1 mutations by modulating dNTP levels. J Microbiol 46(1):75-80 PMID:18337697
- Davidson MB and Brown GW (2008) The N- and C-termini of Elg1 contribute to the maintenance of genome stability. DNA Repair (Amst) 7(8):1221-32 PMID:18482875
- Fu Y, et al. (2008) Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133(4):601-11 PMID:18485869
- Lazzaro F, et al. (2008) Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27(10):1502-12 PMID:18418382
- Mordes DA and Cortez D (2008) Activation of ATR and related PIKKs. Cell Cycle 7(18):2809-12 PMID:18769153
- Ren Q, et al. (2008) Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin. Comp Funct Genomics 2008:634283 PMID:18551189
- Roberts TM, et al. (2008) Regulation of rtt107 recruitment to stalled DNA replication forks by the cullin rtt101 and the rtt109 acetyltransferase. Mol Biol Cell 19(1):171-80 PMID:17978089
- McSherry TD, et al. (2007) Non-catalytic function for ATR in the checkpoint response. Cell Cycle 6(16):2019-30 PMID:17721080
- Torres-Rosell J, et al. (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9(8):923-31 PMID:17643116
- Guo Y, et al. (2006) Analysis of cellular responses to aflatoxin B(1) in yeast expressing human cytochrome P450 1A2 using cDNA microarrays. Mutat Res 593(1-2):121-42 PMID:16122766
- Kats ES, et al. (2006) Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc Natl Acad Sci U S A 103(10):3710-5 PMID:16501045
- Ma JL, et al. (2006) Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J Biol Chem 281(7):3954-63 PMID:16365046
- Schmidt KH and Kolodner RD (2006) Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc Natl Acad Sci U S A 103(48):18196-201 PMID:17114288
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Cobb JA, et al. (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19(24):3055-69 PMID:16357221
- Takata H, et al. (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell 17(4):573-83 PMID:15721260
- Giannattasio M, et al. (2004) Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 23(2):429-38 PMID:14726955
- Lahiri M, et al. (2004) Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol Cell 15(2):287-93 PMID:15260979
- Ramey CJ, et al. (2004) Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 24(23):10313-27 PMID:15542840
- Tanaka K and Russell P (2004) Cds1 phosphorylation by Rad3-Rad26 kinase is mediated by forkhead-associated domain interaction with Mrc1. J Biol Chem 279(31):32079-86 PMID:15173168
- Zou L and Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542-8 PMID:12791985
- Matsuura A, et al. (1999) Genetic control of telomere integrity in Schizosaccharomyces pombe: rad3(+) and tel1(+) are parts of two regulatory networks independent of the downstream protein kinases chk1(+) and cds1(+). Genetics 152(4):1501-12 PMID:10430579
- Dahlen M, et al. (1998) Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol Biol Cell 9(3):611-21 PMID:9487130
Reviews
No reviews curated.
Download References (.nbib)
- Casari E, et al. (2025) Checkpoint activation and recovery: regulation of the 9-1-1 axis by the PP2A phosphatase. DNA Repair (Amst) 151:103854 PMID:40483899
- Frigerio C, et al. (2025) Control of Replication Stress Response by Cytosolic Fe-S Cluster Assembly (CIA) Machinery. Cells 14(6) PMID:40136691
- Yates LA, et al. (2025) DNA Damage and Replication Stress Checkpoints. Annu Rev Biochem 94(1):195-221 PMID:40540755
- Yates LA and Zhang X (2023) Phosphoregulation of the checkpoint kinase Mec1ATR. DNA Repair (Amst) 129:103543 PMID:37480741
- Casari E, et al. (2022) To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 11(20) PMID:36291091
- Pizzul P, et al. (2022) The DNA damage checkpoint: A tale from budding yeast. Front Genet 13:995163 PMID:36186482
- Vanderwaeren L, et al. (2022) Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 23(19) PMID:36232965
- Ahamad N, et al. (2021) Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 67(3):369-382 PMID:33427950
- Arbel M, et al. (2021) PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 12(11) PMID:34828416
- Roy U and Greene EC (2021) The Role of the Rad55-Rad57 Complex in DNA Repair. Genes (Basel) 12(9) PMID:34573372
- Tang XX, et al. (2021) Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 22(2) PMID:33466757
- Tannous EA and Burgers PM (2021) Novel insights into the mechanism of cell cycle kinases Mec1(ATR) and Tel1(ATM). Crit Rev Biochem Mol Biol 56(5):441-454 PMID:34151669
- Yao S, et al. (2021) DNA damage checkpoint and repair: From the budding yeast Saccharomyces cerevisiae to the pathogenic fungus Candida albicans. Comput Struct Biotechnol J 19:6343-6354 PMID:34938410
- Colombo CV, et al. (2020) How do cells sense DNA lesions? Biochem Soc Trans 48(2):677-691 PMID:32219379
- Waterman DP, et al. (2020) Checkpoint Responses to DNA Double-Strand Breaks. Annu Rev Biochem 89:103-133 PMID:32176524
- Williams RM, et al. (2020) Structures and regulations of ATM and ATR, master kinases in genome integrity. Curr Opin Struct Biol 61:98-105 PMID:31924595
- Coutelier H and Xu Z (2019) Adaptation in replicative senescence: a risky business. Curr Genet 65(3):711-716 PMID:30637477
- Li J, et al. (2019) Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim Biophys Sin (Shanghai) 51(9):879-889 PMID:31294447
- Zimmer C and Fabre E (2019) Chromatin mobility upon DNA damage: state of the art and remaining questions. Curr Genet 65(1):1-9 PMID:29947969
- Bonetti D, et al. (2018) Processing of DNA Ends in the Maintenance of Genome Stability. Front Genet 9:390 PMID:30258457
- Seeber A, et al. (2018) Chromosome Dynamics in Response to DNA Damage. Annu Rev Genet 52:295-319 PMID:30208290
- Wood K, et al. (2018) DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Biomolecules 8(1) PMID:29495487
- Pardo B, et al. (2017) Signaling pathways of replication stress in yeast. FEMS Yeast Res 17(2) PMID:27915243
- Smith MJ and Rothstein R (2017) Poetry in motion: Increased chromosomal mobility after DNA damage. DNA Repair (Amst) 56:102-108 PMID:28663070
- Bell SP and Labib K (2016) Chromosome Duplication in Saccharomyces cerevisiae. Genetics 203(3):1027-67 PMID:27384026
- Dörter I and Momany M (2016) Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. Microbiol Spectr 4(6) PMID:28087934
- Feng W (2016) Mec1/ATR, the Program Manager of Nucleic Acids Inc. Genes (Basel) 8(1) PMID:28036033
- Wan B, et al. (2016) Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 15(19):2561-2570 PMID:27580271
- Gazy I, et al. (2015) Elg1, a central player in genome stability. Mutat Res Rev Mutat Res 763:267-79 PMID:25795125
- Lisby M and Rothstein R (2015) Cell biology of mitotic recombination. Cold Spring Harb Perspect Biol 7(3):a016535 PMID:25731763
- Makarova AV and Burgers PM (2015) Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 29:47-55 PMID:25737057
- Gobbini E, et al. (2013) Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair (Amst) 12(10):791-9 PMID:23953933
- Hoch NC, et al. (2013) Genomic stability disorders: from budding yeast to humans. Front Biosci (Schol Ed) 5(2):396-411 PMID:23277058
- Teixeira MT (2013) Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 3:101 PMID:23638436
- Tsabar M and Haber JE (2013) Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr Opin Genet Dev 23(2):166-73 PMID:23602331
- Finn K, et al. (2012) Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 69(9):1447-73 PMID:22083606
- Wellinger RJ and Zakian VA (2012) Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191(4):1073-105 PMID:22879408
- Polo SE and Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409-33 PMID:21363960
- Barlow JH and Rothstein R (2010) Timing is everything: cell cycle control of Rad52. Cell Div 5:7 PMID:20178629
- Eckert-Boulet N and Lisby M (2010) Regulation of homologous recombination at telomeres in budding yeast. FEBS Lett 584(17):3696-702 PMID:20580716
- Errico A and Costanzo V (2010) Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep 11(4):270-8 PMID:20203697
- Lisby M, et al. (2010) The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus 1(2):158-61 PMID:21326947
- Clémenson C and Marsolier-Kergoat MC (2009) DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst) 8(9):1101-9 PMID:19464963
- Davidson MB and Brown GW (2009) Dissecting the DNA damage response using functional genomics approaches in S. cerevisiae. DNA Repair (Amst) 8(9):1110-7 PMID:19464964
- Lisby M and Géli V (2009) DNA damage response to eroded telomeres. Cell Cycle 8(22):3617-8 PMID:19884796
- Lisby M and Rothstein R (2009) Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8(9):1068-76 PMID:19473884
- Moser BA and Nakamura TM (2009) Protection and replication of telomeres in fission yeast. Biochem Cell Biol 87(5):747-58 PMID:19898524
- Navadgi-Patil VM and Burgers PM (2009) A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8(9):996-1003 PMID:19464966
- Putnam CD, et al. (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 8(9):974-82 PMID:19477695
- Schleker T, et al. (2009) Posttranslational modifications of repair factors and histones in the cellular response to stalled replication forks. DNA Repair (Amst) 8(9):1089-100 PMID:19482523
- Chen CC and Tyler J (2008) Chromatin reassembly signals the end of DNA repair. Cell Cycle 7(24):3792-7 PMID:19066448
- Fu Y, et al. (2008) DNA damage-induced gene expression in Saccharomyces cerevisiae. FEMS Microbiol Rev 32(6):908-26 PMID:18616603
- Wood JL and Chen J (2008) DNA-damage checkpoints: location, location, location. Trends Cell Biol 18(10):451-5 PMID:18760607
- Yeung M and Durocher D (2008) Engineering a DNA damage response without DNA damage. Genome Biol 9(7):227 PMID:18671832
- Banerjee S, et al. (2007) Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex. Biochem Biophys Res Commun 362(3):546-9 PMID:17689491
- Callegari AJ and Kelly TJ (2007) Shedding light on the DNA damage checkpoint. Cell Cycle 6(6):660-6 PMID:17387276
- Branzei D and Foiani M (2006) The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312(14):2654-9 PMID:16859682
- Harrison JC and Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209-35 PMID:16805667
- McEachern MJ and Haber JE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75:111-35 PMID:16756487
- Lowndes NF and Toh GW (2005) DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15(3):R99-R102 PMID:15694301
- van Attikum H and Gasser SM (2005) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4(8):1011-4 PMID:16082209
- Freudenreich CH and Lahiri M (2004) Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3(11):1370-4 PMID:15483399
- Lukas J and Bartek J (2004) Watching the DNA repair ensemble dance. Cell 118(6):666-8 PMID:15369665
- Bradbury JM and Jackson SP (2003) The complex matter of DNA double-strand break detection. Biochem Soc Trans 31(Pt 1):40-4 PMID:12546650
- Carr AM (2003) Molecular biology. Beginning at the end. Science 300(5625):1512-3 PMID:12791969
- Cuddihy AR and O'Connell MJ (2003) Cell-cycle responses to DNA damage in G2. Int Rev Cytol 222:99-140 PMID:12503848
- Kolodner RD, et al. (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297(5581):552-7 PMID:12142524
- Osborn AJ, et al. (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12(11):509-16 PMID:12446112
- Rouse J and Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297(5581):547-51 PMID:12142523
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Enomoto S, et al. (2002) MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol Biol Cell 13(8):2626-38 PMID:12181334
- Rouse J and Jackson SP (2002) Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol Cell 9(4):857-69 PMID:11983176
- Rouse J and Jackson SP (2000) LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 19(21):5801-12 PMID:11060031
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Andrade Latino A and Biggins S (2025) Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein. MicroPubl Biol 2025 PMID:40161439
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Kimble MT, et al. (2023) Long-range DNA end resection supports homologous recombination by checkpoint activation rather than extensive homology generation. Elife 12 PMID:37387287
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Yates LA, et al. (2023) A DNA damage-induced phosphorylation circuit enhances Mec1ATR Ddc2ATRIP recruitment to Replication Protein A. Proc Natl Acad Sci U S A 120(14):e2300150120 PMID:36996117
- Yu H, et al. (2022) The peroxisomal exportomer directly inhibits phosphoactivation of the pexophagy receptor Atg36 to suppress pexophagy in yeast. Elife 11 PMID:35404228
- Galati E, et al. (2021) VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 49(22):12785-12804 PMID:34871443
- Tannous EA, et al. (2021) Mechanism of auto-inhibition and activation of Mec1ATR checkpoint kinase. Nat Struct Mol Biol 28(1):50-61 PMID:33169019
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Bommi JR, et al. (2019) Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 24(1):94-106 PMID:30417519
- Memisoglu G, et al. (2019) Mec1ATR Autophosphorylation and Ddc2ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling. Cell Rep 28(4):1090-1102.e3 PMID:31340146
- Cheng X, et al. (2018) Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A 115(40):10028-10033 PMID:30224481
- González-Arranz S, et al. (2018) Functional Impact of the H2A.Z Histone Variant During Meiosis in Saccharomyces cerevisiae. Genetics 209(4):997-1015 PMID:29853474
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Deshpande I, et al. (2017) Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage. Mol Cell 68(2):431-445.e5 PMID:29033322
- Frattini C, et al. (2017) Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics. Mol Cell 68(4):758-772.e4 PMID:29129641
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Wang X, et al. (2017) 3.9 Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP. Science 358(6367):1206-1209 PMID:29191911
- Kamata K, et al. (2016) Four domains of Ada1 form a heterochromatin boundary through different mechanisms. Genes Cells 21(10):1125-1136 PMID:27647735
- Poli J, et al. (2016) Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30(3):337-54 PMID:26798134
- Kapoor P, et al. (2015) Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex. Genes Dev 29(6):591-602 PMID:25792597
- Kırlı K, et al. (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife 4 PMID:26673895
- Bandhu A, et al. (2014) Ddc2 mediates Mec1 activation through a Ddc1- or Dpb11-independent mechanism. PLoS Genet 10(2):e1004136 PMID:24586187
- Chen YH, et al. (2013) DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of Smc6 mutants. Mol Biol Cell 24(15):2431-41 PMID:23783034
- Szakal B and Branzei D (2013) Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J 32(8):1155-67 PMID:23531881
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Douglas AC, et al. (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2(10):1279-89 PMID:23050238
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Manfrini N, et al. (2012) G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. Mol Cell Biol 32(24):4971-85 PMID:23045388
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Pfander B and Diffley JF (2011) Dpb11 coordinates Mec1 kinase activation with cell cycle-regulated Rad9 recruitment. EMBO J 30(24):4897-907 PMID:21946560
- Refolio E, et al. (2011) The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. J Cell Sci 124(Pt 14):2488-500 PMID:21693576
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Chen SH, et al. (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12 PMID:20190278
- Chen SH and Zhou H (2009) Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1. J Biol Chem 284(28):18593-604 PMID:19457865
- Baldo V, et al. (2008) Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response. Mol Cell Biol 28(1):358-75 PMID:17954565
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Mordes DA, et al. (2008) Dpb11 activates the Mec1-Ddc2 complex. Proc Natl Acad Sci U S A 105(48):18730-4 PMID:19028869
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Dubrana K, et al. (2007) The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast. J Cell Sci 120(Pt 23):4209-20 PMID:18003698
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Kanoh Y, et al. (2006) Different requirements for the association of ATR-ATRIP and 9-1-1 to the stalled replication forks. Gene 377:88-95 PMID:16753272
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Majka J, et al. (2006) The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24(6):891-901 PMID:17189191
- Nakada D, et al. (2005) Role of the C terminus of Mec1 checkpoint kinase in its localization to sites of DNA damage. Mol Biol Cell 16(11):5227-35 PMID:16148046
- Nedelcheva MN, et al. (2005) Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 347(3):509-21 PMID:15755447
- Lee SJ, et al. (2004) A Ddc2-Rad53 fusion protein can bypass the requirements for RAD9 and MRC1 in Rad53 activation. Mol Biol Cell 15(12):5443-55 PMID:15456903
- Lin J, et al. (2004) Mutant telomere sequences lead to impaired chromosome separation and a unique checkpoint response. Mol Biol Cell 15(4):1623-34 PMID:14742705
- Lisby M, et al. (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118(6):699-713 PMID:15369670
- Pan X, et al. (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16(3):487-96 PMID:15525520
- Pike BL, et al. (2004) Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol 24(7):2779-88 PMID:15024067
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
- Rouse J and Jackson SP (2002) Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol Cell 9(4):857-69 PMID:11983176
- Clerici M, et al. (2001) Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO J 20(22):6485-98 PMID:11707419
- Myung K, et al. (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104(3):397-408 PMID:11239397
- Paciotti V, et al. (2001) Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol Cell Biol 21(12):3913-25 PMID:11359899
- Wakayama T, et al. (2001) Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 21(3):755-64 PMID:11154263
- Jensen TH, et al. (2000) Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling. Mol Cell Biol 20(21):8047-58 PMID:11027275
- Paciotti V, et al. (2000) The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 14(16):2046-59 PMID:10950868
- Rouse J and Jackson SP (2000) LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 19(21):5801-12 PMID:11060031
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Duffy S, et al. (2016) Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A 113(36):9967-76 PMID:27551064
- Putnam CD, et al. (2016) A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers. Nat Commun 7:11256 PMID:27071721
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Huang Z, et al. (2013) A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep 3(2):577-85 PMID:23416056
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Svensson JP, et al. (2011) Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC Syst Biol 5:157 PMID:21978764
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Rabitsch KP, et al. (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11(13):1001-9 PMID:11470404