Literature Help
ITR1 / YDR497C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Li J, et al. (2022) [Engineering Saccharomyces cerevisiae for efficient production of glucaric acid]. Sheng Wu Gong Cheng Xue Bao 38(2):705-718 PMID:35234392
- Zhu L, et al. (2022) Adaptor linked K63 di-ubiquitin activates Nedd4/Rsp5 E3 ligase. Elife 11 PMID:35770973
- Almeida LD, et al. (2021) Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput. mBio 12(6):e0322121 PMID:34903049
- Ivashov V, et al. (2020) Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids. Elife 9 PMID:32744498
- Hatakeyama R and De Virgilio C (2019) TORC1 specifically inhibits microautophagy through ESCRT-0. Curr Genet 65(5):1243-1249 PMID:31041524
- Santos T, et al. (2019) Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Arch Microbiol 201(1):123-134 PMID:30283989
- McNally EK and Brett CL (2018) The intralumenal fragment pathway mediates ESCRT-independent surface transporter down-regulation. Nat Commun 9(1):5358 PMID:30560896
- Pries V, et al. (2018) Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 25(3):279-290.e7 PMID:29307839
- Mans R, et al. (2017) A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 17(8) PMID:29145596
- Okada M, et al. (2017) Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast. Genes Cells 22(6):591-601 PMID:28503907
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- McCormick MA, et al. (2015) A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 22(5):895-906 PMID:26456335
- Yamagami K, et al. (2015) Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants. PLoS One 10(3):e0120108 PMID:25781026
- Johnson C, et al. (2014) The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLoS Genet 10(3):e1004183 PMID:24603354
- Sarode N, et al. (2014) The Wsc1p cell wall signaling protein controls biofilm (Mat) formation independently of Flo11p in Saccharomyces cerevisiae. G3 (Bethesda) 4(2):199-207 PMID:24318926
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Lanthaler K, et al. (2011) Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast. BMC Biol 9:70 PMID:22023736
- Wang Y, et al. (2011) Two major inositol transporters and their role in cryptococcal virulence. Eukaryot Cell 10(5):618-28 PMID:21398509
- Zanolari B, et al. (2011) Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. J Cell Sci 124(Pt 7):1055-66 PMID:21363887
- Xue C, et al. (2010) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio 1(1) PMID:20689743
- Nikko E and Pelham HR (2009) Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10(12):1856-67 PMID:19912579
- Schneider S, et al. (2008) Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell 20(4):1073-87 PMID:18441213
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Zybailov B, et al. (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5(9):2339-47 PMID:16944946
- Miyashita M, et al. (2003) Mutational analysis and localization of the inositol transporters of Saccharomyces cerevisiae. J Biosci Bioeng 96(3):291-7 PMID:16233524
- Lai K, et al. (1995) Regulation of inositol transport in Saccharomyces cerevisiae involves inositol-induced changes in permease stability and endocytic degradation in the vacuole. J Biol Chem 270(6):2525-34 PMID:7852314
- Nikawa J and Hosaka K (1995) Isolation and characterization of genes that promote the expression of inositol transporter gene ITR1 in Saccharomyces cerevisiae. Mol Microbiol 16(2):301-8 PMID:7565092
- Lai K and McGraw P (1994) Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269(3):2245-51 PMID:8294482
- Nikawa J, et al. (1993) Differential regulation of two myo-inositol transporter genes of Saccharomyces cerevisiae. Mol Microbiol 10(5):955-61 PMID:7934871
- Nikawa J, et al. (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266(17):11184-91 PMID:2040626
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Moresi NG, et al. (2023) Caffeine-tolerant mutations selected through an at-home yeast experimental evolution teaching lab. MicroPubl Biol 2023 PMID:36855741
- Zhao Y, et al. (2023) Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl Environ Microbiol 89(6):e0053523 PMID:37212714
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Marques WL, et al. (2020) Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae. Enzyme Microb Technol 140:109623 PMID:32912683
- O'Neill JS, et al. (2020) Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis. Nat Commun 11(1):4706 PMID:32943618
- Yoshino K, et al. (2019) The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota. Fungal Biol 123(4):318-329 PMID:30928040
- Eisenberg-Bord M, et al. (2018) Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J Cell Biol 217(1):269-282 PMID:29187527
- Fröhlich F, et al. (2016) Proteomic and phosphoproteomic analyses of yeast reveal the global cellular response to sphingolipid depletion. Proteomics 16(21):2759-2763 PMID:27717283
- Isasa M, et al. (2016) Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast. J Biol Chem 291(4):1664-1675 PMID:26601941
- Mans R, et al. (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15(2) PMID:25743786
- Müller M, et al. (2015) The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. Elife 4:e07736 PMID:25902403
- Nadai C, et al. (2015) Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Int J Food Microbiol 215:49-56 PMID:26325600
- Madeo M, et al. (2014) The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae. J Biol Chem 289(48):33066-71 PMID:25326386
- Barghash A and Helms V (2013) Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs. BMC Bioinformatics 14:343 PMID:24283849
- Chumnanpuen P, et al. (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7 Suppl 3(Suppl 3):S7 PMID:24456840
- Tamura Y, et al. (2013) Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17(5):709-18 PMID:23623749
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Ramirez-Córdova J, et al. (2012) Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice. Antonie Van Leeuwenhoek 102(2):247-55 PMID:22535436
- Rupwate SD, et al. (2012) Regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C through the transcriptional repression of upstream activating sequence inositol containing genes. FEBS Lett 586(10):1555-60 PMID:22673525
- Wimalarathna R, et al. (2011) Transcriptional control of genes involved in yeast phospholipid biosynthesis. J Microbiol 49(2):265-73 PMID:21538248
- Puts CF, et al. (2010) A P4-ATPase protein interaction network reveals a link between aminophospholipid transport and phosphoinositide metabolism. J Proteome Res 9(2):833-42 PMID:19968326
- Azab AN, et al. (2009) Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects--a potential mood-stabilizing drug. Life Sci 84(1-2):38-44 PMID:19028504
- Metzger MB and Michaelis S (2009) Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 20(3):1006-19 PMID:19073890
- Pinson B, et al. (2009) Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev 23(12):1399-407 PMID:19528318
- Rossouw D and Bauer FF (2009) Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 84(5):937-54 PMID:19711068
- Váchová L, et al. (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11(2):494-504 PMID:19196279
- Chen YL, et al. (2008) Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun 76(6):2793-801 PMID:18268031
- Cheraiti N, et al. (2008) Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77(5):1093-109 PMID:17938904
- DeLuna A, et al. (2008) Exposing the fitness contribution of duplicated genes. Nat Genet 40(5):676-81 PMID:18408719
- Nunez LR, et al. (2008) Cell wall integrity MAPK pathway is essential for lipid homeostasis. J Biol Chem 283(49):34204-17 PMID:18842580
- Azab AN, et al. (2007) Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol Microbiol 63(4):1248-58 PMID:17257308
- Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3:74 PMID:17224918
- Feddersen S, et al. (2007) Transcriptional regulation of phospholipid biosynthesis is linked to fatty acid metabolism by an acyl-CoA-binding-protein-dependent mechanism in Saccharomyces cerevisiae. Biochem J 407(2):219-30 PMID:17593018
- Palma M, et al. (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12(3-4):241-8 PMID:17587872
- De Hertogh B, et al. (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172(2):771-81 PMID:16118182
- Hancock LC, et al. (2006) Genomic analysis of the Opi- phenotype. Genetics 173(2):621-34 PMID:16582425
- Jablonka W, et al. (2006) Deviation of carbohydrate metabolism by the SIT4 phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta 1760(8):1281-91 PMID:16764994
- Jesch SA, et al. (2006) Multiple endoplasmic reticulum-to-nucleus signaling pathways coordinate phospholipid metabolism with gene expression by distinct mechanisms. J Biol Chem 281(33):24070-83 PMID:16777852
- Mojzita D and Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276(2):147-61 PMID:16850348
- Huang RY, et al. (2005) Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae. Cancer Res 65(13):5890-7 PMID:15994967
- Zybailov B, et al. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77(19):6218-24 PMID:16194081
- Ichimura T, et al. (2004) Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast. Biochemistry 43(20):6149-58 PMID:15147199
- Parveen M, et al. (2004) Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 54(1):46-55 PMID:15201226
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Peng J, et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921-6 PMID:12872131
- Talla E, et al. (2003) A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization. BMC Genomics 4(1):38 PMID:14499002
- Chauhan S, et al. (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24(4):511-22 PMID:11115132
- Wieczorke R, et al. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464(3):123-8 PMID:10618490
- Niederberger C, et al. (1998) Exogenous inositol and genes responsible for inositol transport are required for mating and sporulation in Shizosaccharomyces pombe. Curr Genet 33(4):255-61 PMID:9560432
- Patton-Vogt JL and Henry SA (1998) GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics 149(4):1707-15 PMID:9691030
- Robinson KS, et al. (1996) Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation. Mol Biol Cell 7(1):81-9 PMID:8741841
- Patton JL, et al. (1995) Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae. J Bacteriol 177(12):3379-85 PMID:7768846
- Nikawa J (1994) A cDNA encoding the human transforming growth factor beta receptor suppresses the growth defect of a yeast mutant. Gene 149(2):367-72 PMID:7959019
Reviews
No reviews curated.
Download References (.nbib)
- Kwiatek JM, et al. (2020) Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 1865(1):158434 PMID:30910690
- Lian J, et al. (2018) Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. Biotechnol J 13(9):e1700601 PMID:29436783
- Henry SA, et al. (2014) The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 180:23-43 PMID:24418527
- Henry SA, et al. (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317-49 PMID:22345606
- Conibear E (2010) Converging views of endocytosis in yeast and mammals. Curr Opin Cell Biol 22(4):513-8 PMID:20538447
- Howe AG and McMaster CR (2001) Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. Biochim Biophys Acta 1534(2-3):65-77 PMID:11786293
- Kucharczyk R and Rytka J (2001) Saccharomyces cerevisiae--a model organism for the studies on vacuolar transport. Acta Biochim Pol 48(4):1025-42 PMID:11995965
- Rotin D, et al. (2000) Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 176(1):1-17 PMID:10882424
- Greenberg ML and Lopes JM (1996) Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60(1):1-20 PMID:8852893
- Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166(5):283-92 PMID:8929273
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Johnson C, et al. (2014) The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLoS Genet 10(3):e1004183 PMID:24603354
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Miyashita M, et al. (2003) Mutational analysis and localization of the inositol transporters of Saccharomyces cerevisiae. J Biosci Bioeng 96(3):291-7 PMID:16233524
- Nikawa J, et al. (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266(17):11184-91 PMID:2040626
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Almeida LD, et al. (2021) Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput. mBio 12(6):e0322121 PMID:34903049
- McCormick MA, et al. (2015) A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 22(5):895-906 PMID:26456335
- Johnson C, et al. (2014) The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLoS Genet 10(3):e1004183 PMID:24603354
- Xue C, et al. (2010) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio 1(1) PMID:20689743
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Andrade Latino A and Biggins S (2025) Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein. MicroPubl Biol 2025 PMID:40161439
- Chelius X, et al. (2025) A protein interaction map of the myosin Myo2 reveals a role for Alo1 in mitochondrial inheritance in yeast. J Cell Sci 138(3) PMID:39775849
- Hadjicharalambous A, et al. (2023) Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 8:327 PMID:37766847
- Josefson R, et al. (2023) The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 13(1):9285 PMID:37286562
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Yeter-Alat H, et al. (2023) The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Genes (Basel) 14(8) PMID:37628617
- Khan MM, et al. (2022) Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 41(3):e109360 PMID:34918374
- Shortill SP, et al. (2022) The VINE complex is an endosomal VPS9-domain GEF and SNX-BAR coat. Elife 11 PMID:35938928
- Zhu L, et al. (2022) Adaptor linked K63 di-ubiquitin activates Nedd4/Rsp5 E3 ligase. Elife 11 PMID:35770973
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Singh K, et al. (2019) Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3 (Bethesda) 9(3):921-931 PMID:30670610
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Steunou AL, et al. (2016) Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Mol Cell Biol 36(22):2768-2781 PMID:27550811
- Gallina I, et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533 PMID:25817432
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Yamagami K, et al. (2015) Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants. PLoS One 10(3):e0120108 PMID:25781026
- Fourati Z, et al. (2014) A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 426(22):3689-3702 PMID:25277656
- Smardon AM, et al. (2014) The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25(3):356-67 PMID:24307682
- Chang JS and Winston F (2013) Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3 (Bethesda) 3(3):573-83 PMID:23450643
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Snider J, et al. (2013) Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9(9):565-72 PMID:23831759
- Tamura Y, et al. (2013) Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17(5):709-18 PMID:23623749
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Boettner DR, et al. (2011) Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 22(19):3699-714 PMID:21849475
- Hang M and Smith MM (2011) Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics 187(4):1053-66 PMID:21288874
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Aguilar PS, et al. (2010) A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17(7):901-8 PMID:20526336
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Puts CF, et al. (2010) A P4-ATPase protein interaction network reveals a link between aminophospholipid transport and phosphoinositide metabolism. J Proteome Res 9(2):833-42 PMID:19968326
- Vembar SS, et al. (2010) J domain co-chaperone specificity defines the role of BiP during protein translocation. J Biol Chem 285(29):22484-94 PMID:20430885
- Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
- DeLuna A, et al. (2008) Exposing the fitness contribution of duplicated genes. Nat Genet 40(5):676-81 PMID:18408719
- Hoke SM, et al. (2008) Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC Genet 9:46 PMID:18616809
- Lin YY, et al. (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22(15):2062-74 PMID:18676811
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
- Miller JP, et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102(34):12123-8 PMID:16093310
- Ye P, et al. (2005) Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 1:2005.0026 PMID:16729061
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Blaszczak E, et al. (2024) Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 23(1):100695 PMID:38101750
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Back S, et al. (2019) Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. J Proteome Res 18(1):309-318 PMID:30489083
- Fang NN, et al. (2014) Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16(12):1227-37 PMID:25344756
- Kolawa N, et al. (2013) Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 12(10):2791-803 PMID:23793018
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- MacGurn JA, et al. (2011) TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147(5):1104-17 PMID:22118465
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Hitchcock AL, et al. (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A 100(22):12735-40 PMID:14557538
- Peng J, et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921-6 PMID:12872131
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Songdech P, et al. (2024) Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 24 PMID:38331422
- Ölmez TT, et al. (2023) Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 14(1):7719 PMID:38012152
- Schulze Y, et al. (2023) Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity. Metallomics 15(6) PMID:37193668
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Eisenberg-Bord M, et al. (2018) Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J Cell Biol 217(1):269-282 PMID:29187527
- Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Fang NN, et al. (2014) Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16(12):1227-37 PMID:25344756
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Ruggles KV, et al. (2014) A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance. J Biol Chem 289(7):4417-31 PMID:24273168
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Yu D, et al. (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623 PMID:23151179
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- MacGurn JA, et al. (2011) TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147(5):1104-17 PMID:22118465
- Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID:22114689
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- Pan X, et al. (2010) Trivalent arsenic inhibits the functions of chaperonin complex. Genetics 186(2):725-34 PMID:20660648
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Chasse SA, et al. (2006) Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5(2):330-46 PMID:16467474
- Hancock LC, et al. (2006) Genomic analysis of the Opi- phenotype. Genetics 173(2):621-34 PMID:16582425
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Huang RY, et al. (2005) Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae. Cancer Res 65(13):5890-7 PMID:15994967
- Perrone GG, et al. (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16(1):218-30 PMID:15509654
- Giaever G, et al. (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101(3):793-8 PMID:14718668
- Cohen BA, et al. (2002) Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol Biol Cell 13(5):1608-14 PMID:12006656
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549