Literature Help
MRH1 / YDR033W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Sornlek W, et al. (2024) Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850. Appl Microbiol Biotechnol 108(1):21 PMID:38159116
- Balarezo-Cisneros LN, et al. (2021) Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genet 17(1):e1008761 PMID:33493158
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Takabatake A, et al. (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2805-14 PMID:25503505
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Thayer NH, et al. (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci U S A 111(39):14019-26 PMID:25228775
- Niu W, et al. (2008) Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 4(7):e1000120 PMID:18617996
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
- Delom F, et al. (2006) The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics 6(10):3029-39 PMID:16622836
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Navarre C, et al. (2002) Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics 2(12):1706-14 PMID:12469340
- Aittamaa M, et al. (2001) Functional analysis of six ORFs from Saccharomyces cerevisiae chromosome IV: two-spored asci produced by disruptant of YDR027c and strain-dependent DNA heterogeneity around YDR036c. Yeast 18(10):931-41 PMID:11447599
- Wu K, et al. (2000) Expression and subcellular localization of a membrane protein related to Hsp30p in Saccharomyces cerevisiae. Biochim Biophys Acta 1463(2):477-82 PMID:10675524
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Avecilla G, et al. (2023) Copy number variation alters local and global mutational tolerance. Genome Res 33(8):1340-1353 PMID:37652668
- Fang W, et al. (2022) Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation. Cell Rep 39(2):110672 PMID:35417718
- Yoon SY, et al. (2022) A Genome-Wide Screen Reveals That Endocytic Genes Are Important for Pma1p Asymmetry during Cell Division in Saccharomyces cerevisiae. Int J Mol Sci 23(4) PMID:35216480
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Jiang CR, et al. (2012) Inferring Genetic Interactions via a Data-Driven Second Order Model. Front Genet 3:71 PMID:22563331
- Spira F, et al. (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14(6):640-8 PMID:22544065
- Bircham PW, et al. (2011) Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol Biosyst 7(9):2589-98 PMID:21731954
- Forsmark A, et al. (2011) Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion. Traffic 12(6):740-53 PMID:21477180
- Szopinska A, et al. (2011) Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteomics 10(11):M111.009589 PMID:21825281
- Zhang SQ, et al. (2010) A new multiple regression approach for the construction of genetic regulatory networks. Artif Intell Med 48(2-3):153-60 PMID:19963359
- de Morgan A, et al. (2010) Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. Microbiology (Reading) 156(Pt 6):1758-1771 PMID:20167621
- Bivi N, et al. (2009) Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection. Genome Biol 10(9):R93 PMID:19744312
- Ghazal G, et al. (2009) Yeast RNase III triggers polyadenylation-independent transcription termination. Mol Cell 36(1):99-109 PMID:19818713
- Váchová L, et al. (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11(2):494-504 PMID:19196279
- Bockhorn J, et al. (2008) Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance. Proc Natl Acad Sci U S A 105(46):17682-7 PMID:19004804
- Aronova S, et al. (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18(8):2779-94 PMID:17507646
- De Hertogh B, et al. (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172(2):771-81 PMID:16118182
- Fry RC, et al. (2006) The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA. BMC Genomics 7:313 PMID:17163986
- Duttagupta R, et al. (2005) Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol Cell Biol 25(13):5499-513 PMID:15964806
- Gruhler A, et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310-27 PMID:15665377
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Syeda-Mahmood T (2003) Clustering time-varying gene expression profiles using scale-space signals. Proc IEEE Comput Soc Bioinform Conf 2:48-56 PMID:16452778
- Winzeler EA, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901-6 PMID:10436161
- Crauwels M, et al. (1997) Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae. Yeast 13(10):973-84 PMID:9271111
Reviews
No reviews curated.
Download References (.nbib)
- Camponeschi I, et al. (2023) Light Stress in Yeasts: Signaling and Responses in Creatures of the Night. Int J Mol Sci 24(8) PMID:37108091
- Cheng C, et al. (2017) Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J Biosci Bioeng 123(2):141-146 PMID:27576171
- Mollinedo F (2012) Lipid raft involvement in yeast cell growth and death. Front Oncol 2:140 PMID:23087902
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Delom F, et al. (2006) The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics 6(10):3029-39 PMID:16622836
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Navarre C, et al. (2002) Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics 2(12):1706-14 PMID:12469340
- Wu K, et al. (2000) Expression and subcellular localization of a membrane protein related to Hsp30p in Saccharomyces cerevisiae. Biochim Biophys Acta 1463(2):477-82 PMID:10675524
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Sornlek W, et al. (2024) Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850. Appl Microbiol Biotechnol 108(1):21 PMID:38159116
- Takabatake A, et al. (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2805-14 PMID:25503505
- Niu W, et al. (2008) Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 4(7):e1000120 PMID:18617996
- Aittamaa M, et al. (2001) Functional analysis of six ORFs from Saccharomyces cerevisiae chromosome IV: two-spored asci produced by disruptant of YDR027c and strain-dependent DNA heterogeneity around YDR036c. Yeast 18(10):931-41 PMID:11447599
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Kohler V, et al. (2024) Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 15(1):315 PMID:38182580
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Bresson S, et al. (2023) A posttranscriptional pathway regulates cell wall mRNA expression in budding yeast. Cell Rep 42(3):112184 PMID:36862555
- Courtin B, et al. (2023) Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol 2023 PMID:37746059
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Khan MM, et al. (2022) Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 41(3):e109360 PMID:34918374
- Su XB, et al. (2021) SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 220(7) PMID:33929514
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Yap WS, et al. (2020) The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 133(21) PMID:33033181
- Rössler I, et al. (2019) Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 47(13):6984-7002 PMID:31062022
- Gay S, et al. (2018) A Mad2-Mediated Translational Regulatory Mechanism Promoting S-Phase Cyclin Synthesis Controls Origin Firing and Survival to Replication Stress. Mol Cell 70(4):628-638.e5 PMID:29775579
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Chymkowitch P, et al. (2017) TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Proc Natl Acad Sci U S A 114(5):1039-1044 PMID:28096404
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Hill SM, et al. (2016) Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions. Cell Rep 16(3):826-38 PMID:27373154
- Sung MK, et al. (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. Elife 5 PMID:27552055
- Cary GA, et al. (2015) Proteomic Analysis of Dhh1 Complexes Reveals a Role for Hsp40 Chaperone Ydj1 in Yeast P-Body Assembly. G3 (Bethesda) 5(11):2497-511 PMID:26392412
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Mattiazzi Ušaj M, et al. (2015) Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Metallomics 7(9):1338-51 PMID:26067383
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Takabatake A, et al. (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2805-14 PMID:25503505
- Mehnert CS, et al. (2014) The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 289(39):27352-27362 PMID:25124039
- Babiano R, et al. (2013) Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles. Nucleic Acids Res 41(20):9461-70 PMID:23945946
- Freeberg MA, et al. (2013) Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14(2):R13 PMID:23409723
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Qiu J, et al. (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154(3):596-608 PMID:23911324
- Snider J, et al. (2013) Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9(9):565-72 PMID:23831759
- Srikumar T, et al. (2013) A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome. Mol Syst Biol 9:668 PMID:23712011
- Surma MA, et al. (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519-30 PMID:23891562
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Creamer TJ, et al. (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7(10):e1002329 PMID:22028667
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Aguilar PS, et al. (2010) A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17(7):901-8 PMID:20526336
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Kaake RM, et al. (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9(4):2016-29 PMID:20170199
- Ossareh-Nazari B, et al. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11(7):548-54 PMID:20508643
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Colomina N, et al. (2008) Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 283(42):28670-9 PMID:18667435
- Guerrero C, et al. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 105(36):13333-8 PMID:18757749
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Aronova S, et al. (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18(8):2779-94 PMID:17507646
- Kaplan Y and Kupiec M (2007) A role for the yeast cell cycle/splicing factor Cdc40 in the G1/S transition. Curr Genet 51(2):123-40 PMID:17171376
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Navarre C, et al. (2002) Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics 2(12):1706-14 PMID:12469340
- Sato M, et al. (2002) Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun 296(3):560-7 PMID:12176017
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Frankovsky J, et al. (2021) The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. J Biol Chem 297(4):101155 PMID:34480900
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
- Gruhler A, et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310-27 PMID:15665377
- Ficarro SB, et al. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301-5 PMID:11875433
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Choy JS, et al. (2013) Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability. Mol Biol Cell 24(17):2753-63 PMID:23825022
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Bockhorn J, et al. (2008) Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance. Proc Natl Acad Sci U S A 105(46):17682-7 PMID:19004804
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Niu W, et al. (2008) Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 4(7):e1000120 PMID:18617996
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549