Literature Help
CDC36 / YDL165W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 148
- Aliases
-
DNA19
7
8
,
NOT2
9
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Nahar A, et al. (2022) Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Cell Rep 39(10):110918 PMID:35675778
- Revilleza JEC, et al. (2022) Regulation of CLB6 expression by the cytoplasmic deadenylase Ccr4 through its coding and 3' UTR regions. PLoS One 17(5):e0268283 PMID:35522675
- Alhusaini N and Coller J (2016) The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping. RNA 22(5):709-21 PMID:26952104
- Laribee RN, et al. (2015) Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis. PLoS Genet 11(3):e1005113 PMID:25815716
- Bhaskar V, et al. (2013) Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 20(11):1281-8 PMID:24121231
- Assenholt J, et al. (2011) Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. RNA 17(10):1788-94 PMID:21862638
- Kerr SC, et al. (2011) The Ccr4-Not complex interacts with the mRNA export machinery. PLoS One 6(3):e18302 PMID:21464899
- Kruk JA, et al. (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 25(6):581-93 PMID:21406554
- Azzouz N, et al. (2009) The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 4(8):e6760 PMID:19707589
- Azzouz N, et al. (2009) Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA 15(3):377-83 PMID:19155328
- Traven A, et al. (2009) The Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization in Saccharomyces cerevisiae. Genetics 182(4):955-66 PMID:19487562
- Norbeck J (2008) Carbon source dependent dynamics of the Ccr4-Not complex in Saccharomyces cerevisiae. J Microbiol 46(6):692-6 PMID:19107399
- Panasenko O, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281(42):31389-98 PMID:16926149
- Muhlrad D and Parker R (2005) The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J 24(5):1033-45 PMID:15706350
- Mulder KW, et al. (2005) DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic Acids Res 33(19):6384-92 PMID:16275785
- Zwartjes CG, et al. (2004) Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 279(12):10848-54 PMID:14707134
- Russell P, et al. (2002) Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4-NOT complex. J Mol Biol 322(1):27-39 PMID:12215412
- Tucker M, et al. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21(6):1427-36 PMID:11889048
- Chen J, et al. (2001) Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. J Mol Biol 314(4):683-94 PMID:11733989
- Denis CL, et al. (2001) Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics 158(2):627-34 PMID:11404327
- Liu HY, et al. (2001) Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276(10):7541-8 PMID:11113136
- Albert TK, et al. (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res 28(3):809-17 PMID:10637334
- Badarinarayana V, et al. (2000) Functional interaction of CCR4-NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast. Genetics 155(3):1045-54 PMID:10880468
- Lemaire M and Collart MA (2000) The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit. J Biol Chem 275(35):26925-34 PMID:10864925
- Maillet L, et al. (2000) The essential function of Not1 lies within the Ccr4-Not complex. J Mol Biol 303(2):131-43 PMID:11023781
- Bai Y, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19(10):6642-51 PMID:10490603
- Benson JD, et al. (1998) Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes. EMBO J 17(22):6714-22 PMID:9822614
- Liu HY, et al. (1998) The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J 17(4):1096-106 PMID:9463387
- Collart MA and Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8(5):525-37 PMID:7926748
- Evans DR, et al. (1994) Cell-cycle mutations among the collection of Saccharomyces cerevisiae dna mutants. FEMS Microbiol Lett 116(2):147-53 PMID:8150258
- Neiman AM, et al. (1990) CDC36 and CDC39 are negative elements in the signal transduction pathway of yeast. Cell Regul 1(5):391-401 PMID:2099190
- de Barros Lopes M, et al. (1990) Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway. Mol Cell Biol 10(6):2966-72 PMID:2111445
- Shuster EO and Byers B (1989) Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123(1):29-43 PMID:2680756
- Plesset J, et al. (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169(2):779-84 PMID:3542970
- Ferguson J, et al. (1986) Nucleotide sequence of the yeast cell division cycle start genes CDC28, CDC36, CDC37, and CDC39, and a structural analysis of the predicted products. Nucleic Acids Res 14(16):6681-97 PMID:3018676
- Peterson TA, et al. (1984) A relationship between the yeast cell cycle genes CDC4 and CDC36 and the ets sequence of oncogenic virus E26. Nature 309(5968):556-8 PMID:6374468
- Connolly BM, et al. (1983) Mating factor dependence of G1 cell cycle mutants of Saccharomyces cerevisiae. Curr Genet 7(4):309-12 PMID:24173341
- Shuster JR (1982) "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium. J Bacteriol 151(2):1059-61 PMID:7047491
- Shuster JR (1982) Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae. Mol Cell Biol 2(9):1052-63 PMID:6757719
- Reed SI (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95(3):561-77 PMID:7002718
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Mendoza BJ, et al. (2023) Potency of CRISPR-Cas Antifungals Is Enhanced by Cotargeting DNA Repair and Growth Regulatory Machinery at the Genetic Level. ACS Infect Dis 9(12):2494-2503 PMID:37955405
- Babbarwal V, et al. (2014) The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation. J Biol Chem 289(48):33125-30 PMID:25315781
- Mauxion F, et al. (2013) C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biol 10(2):267-76 PMID:23232451
- Tange Y, et al. (2012) The CCR4-NOT complex is implicated in the viability of aneuploid yeasts. PLoS Genet 8(6):e1002776 PMID:22737087
- Ito W, et al. (2011) RNA-binding protein Khd1 and Ccr4 deadenylase play overlapping roles in the cell wall integrity pathway in Saccharomyces cerevisiae. Eukaryot Cell 10(10):1340-7 PMID:21873511
- Nasertorabi F, et al. (2011) Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Lett 585(14):2182-6 PMID:21669201
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Lau NC, et al. (2010) Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae. PLoS One 5(4):e9864 PMID:20386698
- Ungar L, et al. (2009) A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37(12):3840-9 PMID:19386622
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Reijns MA, et al. (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121(Pt 15):2463-72 PMID:18611963
- Mulder KW, et al. (2007) Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res 35(7):2428-39 PMID:17392337
- Hilgers V, et al. (2006) Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12(10):1835-45 PMID:16940550
- Tischler J, et al. (2006) Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol 7(8):R69 PMID:16884526
- Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 PMID:17003135
- Lenssen E, et al. (2005) The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation--via a newly identified Glc7/Bud14 type I protein phosphatase module--and TFIID promoter distribution. Mol Cell Biol 25(1):488-98 PMID:15601868
- Temme C, et al. (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23(14):2862-71 PMID:15215893
- Frolov MV, et al. (1998) Regena (Rga), a Drosophila homolog of the global negative transcriptional regulator CDC36 (NOT2) from yeast, modifies gene expression and suppresses position effect variegation. Genetics 148(1):317-29 PMID:9475742
- Grishin AV, et al. (1998) Mot3, a Zn finger transcription factor that modulates gene expression and attenuates mating pheromone signaling in Saccharomyces cerevisiae. Genetics 149(2):879-92 PMID:9611199
- Oberholzer U and Collart MA (1998) Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207(1):61-9 PMID:9511744
- Fujimura HA (1994) Yeast homolog of mammalian mitogen-activated protein kinase, FUS3/DAC2 kinase, is required both for cell fusion and for G1 arrest of the cell cycle and morphological changes by the cdc37 mutation. J Cell Sci 107 ( Pt 9):2617-22 PMID:7844175
- Irie K, et al. (1994) The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes. Mol Cell Biol 14(5):3150-7 PMID:8164670
- Tanaka S, et al. (1989) Estrogen can regulate the cell cycle in the early G1 phase of yeast by increasing the amount of adenylate cyclase mRNA. Cell 57(4):675-81 PMID:2541920
- Barker DG, et al. (1985) The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage. Nucleic Acids Res 13(23):8323-37 PMID:3909103
- Egilsson V, et al. (1985) Suppression of temperature sensitive mutations in oncogene-related CDC genes in Saccharomyces cerevisiae by catabolite repression resistance and cytoplasmic petite mutations. Curr Genet 10(1):35-7 PMID:3940063
- Breter HJ, et al. (1983) Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39. Mol Cell Biol 3(5):881-91 PMID:6346060
- Dumas LB, et al. (1982) New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication. Mol Gen Genet 187(1):42-6 PMID:6761543
Reviews
No reviews curated.
Download References (.nbib)
- Wang D, et al. (2024) Fungal biofilm formation and its regulatory mechanism. Heliyon 10(12):e32766 PMID:38988529
- He F and Jacobson A (2023) Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 290(21):5057-5085 PMID:36098474
- Laribee RN (2021) Ccr4-Not as a mediator of environmental signaling: a jack of all trades and master of all. Curr Genet 67(5):707-713 PMID:33791857
- Falcone C and Mazzoni C (2018) RNA stability and metabolism in regulated cell death, aging and diseases. FEMS Yeast Res 18(6) PMID:29986027
- Villanyi Z and Collart MA (2015) Ccr4-Not is at the core of the eukaryotic gene expression circuitry. Biochem Soc Trans 43(6):1253-8 PMID:26614669
- Braun KA and Young ET (2014) Coupling mRNA synthesis and decay. Mol Cell Biol 34(22):4078-87 PMID:25154419
- Collart MA (2013) The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. ISRN Mol Biol 2013:548359 PMID:27335678
- Collart MA, et al. (2013) The Not3/5 subunit of the Ccr4-Not complex: a central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal 25(4):743-51 PMID:23280189
- Das S and Das B (2013) mRNA quality control pathways in Saccharomyces cerevisiae. J Biosci 38(3):615-40 PMID:23938393
- Haimovich G, et al. (2013) The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim Biophys Acta 1829(6-7):643-53 PMID:23337853
- Panepinto JC, et al. (2013) The cellular roles of Ccr4-NOT in model and pathogenic fungi-implications for fungal virulence. Front Genet 4:302 PMID:24391665
- Reese JC (2013) The control of elongation by the yeast Ccr4-not complex. Biochim Biophys Acta 1829(1):127-33 PMID:22975735
- Wahle E and Winkler GS (2013) RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829(6-7):561-70 PMID:23337855
- Balagopal V, et al. (2012) Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta 1819(6):593-603 PMID:22266130
- Collart MA and Panasenko OO (2012) The Ccr4--not complex. Gene 492(1):42-53 PMID:22027279
- Miller JE and Reese JC (2012) Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47(4):315-33 PMID:22416820
- Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191(3):671-702 PMID:22785621
- Pérez-Ortín JE, et al. (2012) Genome-wide studies of mRNA synthesis and degradation in eukaryotes. Biochim Biophys Acta 1819(6):604-15 PMID:22182827
- Shoemaker CJ and Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19(6):594-601 PMID:22664987
- Boyce KJ and Andrianopoulos A (2011) Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol 19(8):400-10 PMID:21640592
- Wiederhold K and Passmore LA (2010) Cytoplasmic deadenylation: regulation of mRNA fate. Biochem Soc Trans 38(6):1531-6 PMID:21118121
- Weake VM and Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653-63 PMID:18374642
- Weston A and Sommerville J (2006) Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34(10):3082-94 PMID:16769775
- Collart MA (2003) Global control of gene expression in yeast by the Ccr4-Not complex. Gene 313:1-16 PMID:12957374
- Denis CL and Chen J (2003) The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog Nucleic Acid Res Mol Biol 73:221-50 PMID:12882519
- Decker CJ and Parker R (2002) mRNA decay enzymes: decappers conserved between yeast and mammals. Proc Natl Acad Sci U S A 99(20):12512-4 PMID:12271148
- Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62(2):465-503 PMID:9618449
- Jacquet M and Camonis J (1985) [Control of the cell division cycle and sporulation in Saccharomyces cerevisiae by the cyclic AMP system]. Biochimie 67(1):35-43 PMID:2986730
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Alhusaini N and Coller J (2016) The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping. RNA 22(5):709-21 PMID:26952104
- Kruk JA, et al. (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 25(6):581-93 PMID:21406554
- Panasenko O, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281(42):31389-98 PMID:16926149
- Muhlrad D and Parker R (2005) The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J 24(5):1033-45 PMID:15706350
- Tucker M, et al. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21(6):1427-36 PMID:11889048
- Denis CL, et al. (2001) Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics 158(2):627-34 PMID:11404327
- Bai Y, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19(10):6642-51 PMID:10490603
- Collart MA and Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8(5):525-37 PMID:7926748
- de Barros Lopes M, et al. (1990) Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway. Mol Cell Biol 10(6):2966-72 PMID:2111445
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Panasenko O, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281(42):31389-98 PMID:16926149
- Mulder KW, et al. (2005) DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic Acids Res 33(19):6384-92 PMID:16275785
- Plesset J, et al. (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169(2):779-84 PMID:3542970
- Reed SI (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95(3):561-77 PMID:7002718
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Yáñez-Vilches A, et al. (2024) Physical interactions between specifically regulated subpopulations of the MCM and RNR complexes prevent genetic instability. PLoS Genet 20(5):e1011148 PMID:38776358
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Mendoza BJ, et al. (2023) Potency of CRISPR-Cas Antifungals Is Enhanced by Cotargeting DNA Repair and Growth Regulatory Machinery at the Genetic Level. ACS Infect Dis 9(12):2494-2503 PMID:37955405
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Smurova K, et al. (2023) Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 14(1):3172 PMID:37263996
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Pillet B, et al. (2022) Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. Elife 11 PMID:35357307
- Au WC, et al. (2020) Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast. PLoS Genet 16(2):e1008597 PMID:32032354
- Bartolec TK, et al. (2020) Cross-linking Mass Spectrometry Analysis of the Yeast Nucleus Reveals Extensive Protein-Protein Interactions Not Detected by Systematic Two-Hybrid or Affinity Purification-Mass Spectrometry. Anal Chem 92(2): 1874-1882. PMID:31851481
- Buschauer R, et al. (2020) The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science 368(6488) PMID:32299921
- Ming Sun S, et al. (2020) A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in S. cerevisiae. J Cell Sci 133(10) PMID:32299836
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Bommi JR, et al. (2019) Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 24(1):94-106 PMID:30417519
- Jiang H, et al. (2019) Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 33(11-12):705-717 PMID:30948432
- Garre E, et al. (2018) The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 14(7):e1007563 PMID:30059503
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Damodaren N, et al. (2017) Def1 interacts with TFIIH and modulates RNA polymerase II transcription. Proc Natl Acad Sci U S A 114(50):13230-13235 PMID:29180430
- Buser R, et al. (2016) The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet 12(2):e1005843 PMID:26849847
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Steunou AL, et al. (2016) Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Mol Cell Biol 36(22):2768-2781 PMID:27550811
- Stowell JAW, et al. (2016) Reconstitution of Targeted Deadenylation by the Ccr4-Not Complex and the YTH Domain Protein Mmi1. Cell Rep 17(8):1978-1989 PMID:27851962
- Leung GP, et al. (2014) Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae. G3 (Bethesda) 4(6):1059-69 PMID:24700328
- Bhaskar V, et al. (2013) Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 20(11):1281-8 PMID:24121231
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Schlecht U, et al. (2012) Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci U S A 109(23):9213-8 PMID:22615397
- Assenholt J, et al. (2011) Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. RNA 17(10):1788-94 PMID:21862638
- Kerr SC, et al. (2011) The Ccr4-Not complex interacts with the mRNA export machinery. PLoS One 6(3):e18302 PMID:21464899
- Kruk JA, et al. (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 25(6):581-93 PMID:21406554
- Magtanong L, et al. (2011) Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 29(6):505-11 PMID:21572441
- Nasertorabi F, et al. (2011) Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Lett 585(14):2182-6 PMID:21669201
- Lau NC, et al. (2010) Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae. PLoS One 5(4):e9864 PMID:20386698
- Ossareh-Nazari B, et al. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11(7):548-54 PMID:20508643
- Azzouz N, et al. (2009) Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA 15(3):377-83 PMID:19155328
- Azzouz N, et al. (2009) The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 4(8):e6760 PMID:19707589
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134 PMID:19547744
- Hannum G, et al. (2009) Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet 5(12):e1000782 PMID:20041197
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Wilmes GM, et al. (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32(5):735-46 PMID:19061648
- Collins SR, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806-10 PMID:17314980
- Lenssen E, et al. (2007) The Ccr4-not complex regulates Skn7 through Srb10 kinase. Eukaryot Cell 6(12):2251-9 PMID:17965252
- Mulder KW, et al. (2007) Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae. Genetics 176(1):181-92 PMID:17513889
- Mulder KW, et al. (2007) Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res 35(7):2428-39 PMID:17392337
- Wong J, et al. (2007) A protein interaction map of the mitotic spindle. Mol Biol Cell 18(10):3800-9 PMID:17634282
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Panasenko O, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281(42):31389-98 PMID:16926149
- Takagi Y and Kornberg RD (2006) Mediator as a general transcription factor. J Biol Chem 281(1):80-9 PMID:16263706
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Deluen C, et al. (2002) The Ccr4-not complex and yTAF1 (yTaf(II)130p/yTaf(II)145p) show physical and functional interactions. Mol Cell Biol 22(19):6735-49 PMID:12215531
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
- Russell P, et al. (2002) Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4-NOT complex. J Mol Biol 322(1):27-39 PMID:12215412
- Chen J, et al. (2001) Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. J Mol Biol 314(4):683-94 PMID:11733989
- Ito T, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569-74 PMID:11283351
- Liu HY, et al. (2001) Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276(10):7541-8 PMID:11113136
- Badarinarayana V, et al. (2000) Functional interaction of CCR4-NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast. Genetics 155(3):1045-54 PMID:10880468
- Lemaire M and Collart MA (2000) The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit. J Biol Chem 275(35):26925-34 PMID:10864925
- Maillet L, et al. (2000) The essential function of Not1 lies within the Ccr4-Not complex. J Mol Biol 303(2):131-43 PMID:11023781
- Uetz P, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623-7 PMID:10688190
- Bai Y, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19(10):6642-51 PMID:10490603
- Benson JD, et al. (1998) Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes. EMBO J 17(22):6714-22 PMID:9822614
- Liu HY, et al. (1998) The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J 17(4):1096-106 PMID:9463387
- Oberholzer U and Collart MA (1998) Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207(1):61-9 PMID:9511744
- Collart MA and Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8(5):525-37 PMID:7926748
- Irie K, et al. (1994) The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes. Mol Cell Biol 14(5):3150-7 PMID:8164670
- Shuster JR (1982) Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae. Mol Cell Biol 2(9):1052-63 PMID:6757719
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Neumüller RA, et al. (2013) Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 6(289):ra70 PMID:23962978
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Ungar L, et al. (2009) A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37(12):3840-9 PMID:19386622
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549