Literature Help
SCM3 / YDL139C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Popchock AR, et al. (2025) Stable centromere association of the yeast histone variant Cse4 requires its essential N-terminal domain. EMBO J 44(5):1488-1511 PMID:39809842
- Shukla S, et al. (2024) Disorder in CENP-ACse4 tail-chaperone interaction facilitates binding with Ame1/Okp1 at the kinetochore. Structure 32(6):690-705.e6 PMID:38565139
- Popchock AR, et al. (2023) Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 42(17):e114534 PMID:37469281
- Nakabayashi Y and Seki M (2022) Transcription destabilizes centromere function. Biochem Biophys Res Commun 586:150-156 PMID:34844121
- Mishra PK, et al. (2021) R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 32(1):74-89 PMID:33147102
- Shahnejat-Bushehri S and Ehrenhofer-Murray AE (2020) The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 117(10):5386-5393 PMID:32079723
- Bhattacharya A, et al. (2019) Backbone and side-chain resonance assignments of centromeric protein Scm3 from Saccharomyces cerevisiae. Biomol NMR Assign 13(2):267-273 PMID:30937734
- Lang J, et al. (2018) An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. Elife 7 PMID:30117803
- Mishra PK, et al. (2015) Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Mol Biol Cell 26(11):2067-79 PMID:25833709
- Dechassa ML, et al. (2014) Scm3 deposits a (Cse4-H4)2 tetramer onto DNA through a Cse4-H4 dimer intermediate. Nucleic Acids Res 42(9):5532-42 PMID:24623811
- Wisniewski J, et al. (2014) Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. Elife 3:e02203 PMID:24844245
- Hong J, et al. (2013) Identification of functionally conserved regions in the structure of the chaperone/CenH3/H4 complex. J Mol Biol 425(3):536-45 PMID:23178171
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Dechassa ML, et al. (2011) Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2:313 PMID:21587230
- Huang CC, et al. (2011) Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications in centromere evolution. Mol Cell Biol 31(5):1030-40 PMID:21173161
- Luconi L, et al. (2011) The CENP-A chaperone Scm3 becomes enriched at kinetochores in anaphase independently of CENP-A incorporation. Cell Cycle 10(19):3369-78 PMID:21926480
- Mishra PK, et al. (2011) Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet 7(9):e1002303 PMID:21980305
- Shivaraju M, et al. (2011) Scm3 is a centromeric nucleosome assembly factor. J Biol Chem 286(14):12016-23 PMID:21317428
- Xiao H, et al. (2011) Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast. Mol Cell 43(3):369-80 PMID:21816344
- Zhou Z, et al. (2011) Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472(7342):234-7 PMID:21412236
- Hewawasam G, et al. (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40(3):444-54 PMID:21070970
- Camahort R, et al. (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794-805 PMID:19782029
- Sanchez-Pulido L, et al. (2009) Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137(7):1173-4 PMID:19563746
- Visnapuu ML and Greene EC (2009) Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat Struct Mol Biol 16(10):1056-62 PMID:19734899
- Aravind L, et al. (2007) Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 6(20):2511-5 PMID:17704645
- Camahort R, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26(6):853-65 PMID:17569568
- Mizuguchi G, et al. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129(6):1153-64 PMID:17574026
- Stoler S, et al. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104(25):10571-6 PMID:17548816
- Chen Y, et al. (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20(18):7037-48 PMID:10958698
- Launhardt H and Munder T (2000) Post-translational regulation of Saccharomyces cerevisiae proteins tagged with the hormone-binding domains of mammalian nuclear receptors. Mol Gen Genet 264(3):317-24 PMID:11085272
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Van Damme P, et al. (2023) Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 299(2):102824 PMID:36567016
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Haliki E, et al. (2019) Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae. J Biol Phys 45(3):235-251 PMID:31175490
- Ling YH and Yuen KWY (2019) Point centromere activity requires an optimal level of centromeric noncoding RNA. Proc Natl Acad Sci U S A 116(13):6270-6279 PMID:30850541
- Hewawasam GS, et al. (2018) Chromatin assembly factor-1 (CAF-1) chaperone regulates Cse4 deposition into chromatin in budding yeast. Nucleic Acids Res 46(9):4440-4455 PMID:29522205
- Mishra PK, et al. (2018) Budding yeast CENP-ACse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 17(1):11-23 PMID:28980861
- Hewawasam GS, et al. (2014) Phosphorylation by casein kinase 2 facilitates Psh1 protein-assisted degradation of Cse4 protein. J Biol Chem 289(42):29297-309 PMID:25183013
- Ambroset C, et al. (2011) Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 (Bethesda) 1(4):263-81 PMID:22384338
- Cho US and Harrison SC (2011) Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc Natl Acad Sci U S A 108(23):9367-71 PMID:21606327
- Ohkuni K and Kitagawa K (2011) Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr Biol 21(20):1695-703 PMID:22000103
- Rogers C, et al. (2010) Connecting mutations of the RNA polymerase II C-terminal domain to complex phenotypic changes using combined gene expression and network analyses. PLoS One 5(6):e11386 PMID:20613981
- Pidoux AL, et al. (2009) Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol Cell 33(3):299-311 PMID:19217404
- Williams JS, et al. (2009) Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell 33(3):287-98 PMID:19217403
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Chin JK, et al. (2006) Esc4/Rtt107 and the control of recombination during replication. DNA Repair (Amst) 5(5):618-28 PMID:16569515
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Kellis M, et al. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423(6937):241-54 PMID:12748633
- Llorente B, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487(1):101-12 PMID:11152893
Reviews
No reviews curated.
Download References (.nbib)
- McAinsh AD and Marston AL (2022) The Four Causes: The Functional Architecture of Centromeres and Kinetochores. Annu Rev Genet 56:279-314 PMID:36055650
- Thu YM (2020) How Not To Be in the Wrong Place at the Wrong Time: An Education Primer for Use with "Deposition of Centromeric Histone H3 Variant CENP-A/Cse4 into Chromatin Is Facilitated by Its C-Terminal Sumoylation". Genetics 216(2):333-342 PMID:33023931
- Musacchio A and Desai A (2017) A Molecular View of Kinetochore Assembly and Function. Biology (Basel) 6(1) PMID:28125021
- Yamagishi Y, et al. (2014) Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38(2):185-200 PMID:24666101
- Bui M, et al. (2013) The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus 4(1):37-42 PMID:23324462
- Elsässer SJ (2013) A common structural theme in histone chaperones mimics interhistone contacts. Trends Biochem Sci 38(7):333-6 PMID:23790282
- Roy B, et al. (2013) The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 338(2):107-17 PMID:23039831
- Choy JS, et al. (2012) Insights into assembly and regulation of centromeric chromatin in Saccharomyces cerevisiae. Biochim Biophys Acta 1819(7):776-83 PMID:22366340
- Henikoff S and Furuyama T (2012) The unconventional structure of centromeric nucleosomes. Chromosoma 121(4):341-52 PMID:22552438
- Henikoff S and Henikoff JG (2012) "Point" centromeres of Saccharomyces harbor single centromere-specific nucleosomes. Genetics 190(4):1575-7 PMID:22234856
- Bai Y, et al. (2011) Recognition of centromeric histone variant CenH3s by their chaperones: structurally conserved or not. Cell Cycle 10(19):3217-8 PMID:21926476
- Hewawasam GS and Gerton JL (2011) Cse4 gets a kiss-of-death from Psh1. Cell Cycle 10(4):566-7 PMID:21293184
- Folco HD and Desai A (2010) A PSHaver for centromeric histones. Mol Cell 40(3):351-2 PMID:21070962
- Mehta GD, et al. (2010) Centromere identity: a challenge to be faced. Mol Genet Genomics 284(2):75-94 PMID:20585957
- Malik HS and Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138(6):1067-82 PMID:19766562
- Zhang W, et al. (2007) A specialized nucleosome has a "point" to make. Cell 129(6):1047-9 PMID:17574019
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Zhou Z, et al. (2011) Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472(7342):234-7 PMID:21412236
- Hewawasam G, et al. (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40(3):444-54 PMID:21070970
- Camahort R, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26(6):853-65 PMID:17569568
- Mizuguchi G, et al. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129(6):1153-64 PMID:17574026
- Stoler S, et al. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104(25):10571-6 PMID:17548816
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Camahort R, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26(6):853-65 PMID:17569568
- Mizuguchi G, et al. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129(6):1153-64 PMID:17574026
- Stoler S, et al. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104(25):10571-6 PMID:17548816
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Shukla S, et al. (2024) Disorder in CENP-ACse4 tail-chaperone interaction facilitates binding with Ame1/Okp1 at the kinetochore. Structure 32(6):690-705.e6 PMID:38565139
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Zhou N, et al. (2021) Molecular basis for the selective recognition and ubiquitination of centromeric histone H3 by yeast E3 ligase Psh1. J Genet Genomics 48(6):463-472 PMID:34217622
- Gutierrez-Escribano P, et al. (2020) Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction. Mol Cell 80(6):1039-1054.e6 PMID:33301732
- Ohkuni K, et al. (2020) Deposition of Centromeric Histone H3 Variant CENP-A/Cse4 into Chromatin Is Facilitated by Its C-Terminal Sumoylation. Genetics 214(4):839-854 PMID:32111629
- Chao JT, et al. (2019) Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry. Dev Cell 51(2):173-191.e5 PMID:31564614
- Mishra PK, et al. (2018) Budding yeast CENP-ACse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 17(1):11-23 PMID:28980861
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Mishra PK, et al. (2015) Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Mol Biol Cell 26(11):2067-79 PMID:25833709
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Dechassa ML, et al. (2014) Scm3 deposits a (Cse4-H4)2 tetramer onto DNA through a Cse4-H4 dimer intermediate. Nucleic Acids Res 42(9):5532-42 PMID:24623811
- Chatterjee A, et al. (2013) Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J 32(5):677-87 PMID:23395900
- Hong J, et al. (2013) Identification of functionally conserved regions in the structure of the chaperone/CenH3/H4 complex. J Mol Biol 425(3):536-45 PMID:23178171
- Cho US and Harrison SC (2011) Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol 19(1):48-55 PMID:22139014
- Choy JS, et al. (2011) A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 189(1):11-21 PMID:21652526
- Luconi L, et al. (2011) The CENP-A chaperone Scm3 becomes enriched at kinetochores in anaphase independently of CENP-A incorporation. Cell Cycle 10(19):3369-78 PMID:21926480
- Mishra PK, et al. (2011) Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet 7(9):e1002303 PMID:21980305
- Xiao H, et al. (2011) Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast. Mol Cell 43(3):369-80 PMID:21816344
- Zhou Z, et al. (2011) Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472(7342):234-7 PMID:21412236
- Hewawasam G, et al. (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40(3):444-54 PMID:21070970
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Camahort R, et al. (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794-805 PMID:19782029
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Heidinger-Pauli JM, et al. (2009) Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell 34(3):311-21 PMID:19450529
- Tonikian R, et al. (2009) Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 7(10):e1000218 PMID:19841731
- Camahort R, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26(6):853-65 PMID:17569568
- Mizuguchi G, et al. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129(6):1153-64 PMID:17574026
- Stoler S, et al. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104(25):10571-6 PMID:17548816
- Wong J, et al. (2007) A protein interaction map of the mitotic spindle. Mol Biol Cell 18(10):3800-9 PMID:17634282
- Chin JK, et al. (2006) Esc4/Rtt107 and the control of recombination during replication. DNA Repair (Amst) 5(5):618-28 PMID:16569515
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Ito T, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569-74 PMID:11283351
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Van Damme P, et al. (2023) Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 299(2):102824 PMID:36567016
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
- Ohnuki S and Ohya Y (2018) High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biol 16(5):e2005130 PMID:29768403
- Duffy S, et al. (2016) Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A 113(36):9967-76 PMID:27551064
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549