Literature Help
CNN1 / YFR046C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Hinshaw SM, et al. (2023) Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly. Curr Biol 33(4):688-696.e6 PMID:36736323
- Zahm JA, et al. (2023) Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface. Open Biol 13(3):220378 PMID:36883282
- Torvi JR, et al. (2022) Reconstitution of kinetochore motility and microtubule dynamics reveals a role for a kinesin-8 in establishing end-on attachments. Elife 11 PMID:35791811
- Ghodgaonkar-Steger M, et al. (2020) C-Terminal Motifs of the MTW1 Complex Cooperatively Stabilize Outer Kinetochore Assembly in Budding Yeast. Cell Rep 32(13):108190 PMID:32997987
- Hinshaw SM and Harrison SC (2020) The Structural Basis for Kinetochore Stabilization by Cnn1/CENP-T. Curr Biol 30(17):3425-3431.e3 PMID:32679099
- Zhang Z, et al. (2020) Crystal structure of the Cenp-HIKHead-TW sub-module of the inner kinetochore CCAN complex. Nucleic Acids Res 48(19):11172-11184 PMID:32976599
- Hinshaw SM and Harrison SC (2019) The structure of the Ctf19c/CCAN from budding yeast. Elife 8 PMID:30762520
- Suhandynata RT, et al. (2019) Recruitment of the Ulp2 protease to the inner kinetochore prevents its hyper-sumoylation to ensure accurate chromosome segregation. PLoS Genet 15(11):e1008477 PMID:31747400
- Yan K, et al. (2019) Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome. Nature 574(7777):278-282 PMID:31578520
- Lang J, et al. (2018) An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. Elife 7 PMID:30117803
- Dhatchinamoorthy K, et al. (2017) Structural plasticity of the living kinetochore. J Cell Biol 216(11):3551-3570 PMID:28939613
- Pekgöz Altunkaya G, et al. (2016) CCAN Assembly Configures Composite Binding Interfaces to Promote Cross-Linking of Ndc80 Complexes at the Kinetochore. Curr Biol 26(17):2370-8 PMID:27524485
- Meyer RE, et al. (2015) Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae. Mol Biol Cell 26(17):2986-3000 PMID:26157162
- Thapa KS, et al. (2015) The Mps1 kinase modulates the recruitment and activity of Cnn1(CENP-T) at Saccharomyces cerevisiae kinetochores. Genetics 200(1):79-90 PMID:25716979
- Vincenten N, et al. (2015) The kinetochore prevents centromere-proximal crossover recombination during meiosis. Elife 4 PMID:26653857
- Malvezzi F, et al. (2013) A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 32(3):409-23 PMID:23334295
- Zaborske JM, et al. (2013) Multiple transcripts from a 3'-UTR reporter vary in sensitivity to nonsense-mediated mRNA decay in Saccharomyces cerevisiae. PLoS One 8(11):e80981 PMID:24260526
- Bock LJ, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14(6):614-24 PMID:22561345
- Schleiffer A, et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14(6):604-13 PMID:22561346
- Yuen KW, et al. (2007) Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci U S A 104(10):3925-30 PMID:17360454
- Loog M and Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434(7029):104-8 PMID:15744308
- De Wulf P, et al. (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17(23):2902-21 PMID:14633972
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Cho RJ, et al. (1998) Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc Natl Acad Sci U S A 95(7):3752-7 PMID:9520439
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Barrero DJ, et al. (2024) Architecture of native kinetochores revealed by structural studies utilizing a thermophilic yeast. Curr Biol 34(17):3881-3893.e5 PMID:39127048
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Ólafsson G and Thorpe PH (2020) Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA. PLoS Genet 16(8):e1008990 PMID:32810142
- Gupta A, et al. (2018) Purification of kinetochores from the budding yeast Saccharomyces cerevisiae. Methods Cell Biol 144:349-370 PMID:29804677
- Kõivomägi M, et al. (2013) Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20(12):1415-24 PMID:24186061
- McIntosh JR, et al. (2013) Conserved and divergent features of kinetochores and spindle microtubule ends from five species. J Cell Biol 200(4):459-74 PMID:23420873
- Durand-Dubief M, et al. (2012) SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLoS Genet 8(9):e1002974 PMID:23028372
- Gonen S, et al. (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19(9):925-9 PMID:22885327
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Moses AM, et al. (2007) Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Genome Biol 8(2):R23 PMID:17316440
- Wong J, et al. (2007) A protein interaction map of the mitotic spindle. Mol Biol Cell 18(10):3800-9 PMID:17634282
- Meraldi P, et al. (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7(3):R23 PMID:16563186
- Montpetit B, et al. (2006) Sumoylation of the budding yeast kinetochore protein Ndc10 is required for Ndc10 spindle localization and regulation of anaphase spindle elongation. J Cell Biol 174(5):653-63 PMID:16923829
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
Reviews
No reviews curated.
Download References (.nbib)
- Yatskevich S, et al. (2023) Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 81:102638 PMID:37343495
- McAinsh AD and Marston AL (2022) The Four Causes: The Functional Architecture of Centromeres and Kinetochores. Annu Rev Genet 56:279-314 PMID:36055650
- Mehta G, et al. (2022) Minichromosome maintenance proteins in eukaryotic chromosome segregation. Bioessays 44(1):e2100218 PMID:34841543
- Klemm C, et al. (2021) Cell-cycle phospho-regulation of the kinetochore. Curr Genet 67(2):177-193 PMID:33221975
- Kixmoeller K, et al. (2020) The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 10(6):200051 PMID:32516549
- Hamilton G, et al. (2019) Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Curr Opin Cell Biol 60:44-52 PMID:31078123
- Jenni S, et al. (2017) Molecular Structures of Yeast Kinetochore Subcomplexes and Their Roles in Chromosome Segregation. Cold Spring Harb Symp Quant Biol 82:83-89 PMID:29167284
- Musacchio A and Desai A (2017) A Molecular View of Kinetochore Assembly and Function. Biology (Basel) 6(1) PMID:28125021
- Drinnenberg IA, et al. (2016) Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus? Trends Cell Biol 26(7):498-510 PMID:26877204
- Cieśliński K and Ries J (2014) The yeast kinetochore - structural insights from optical microscopy. Curr Opin Chem Biol 20:1-8 PMID:24763395
- Corbett KD and Desai A (2014) A new piece in the kinetochore jigsaw puzzle. J Cell Biol 206(4):457-9 PMID:25135931
- Malvezzi F and Westermann S (2014) "Uno, nessuno e centomila": the different faces of the budding yeast kinetochore. Chromosoma 123(5):447-57 PMID:24964966
- Yamagishi Y, et al. (2014) Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38(2):185-200 PMID:24666101
- Biggins S (2013) The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194(4):817-46 PMID:23908374
- Roy B, et al. (2013) The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 338(2):107-17 PMID:23039831
- Westermann S and Schleiffer A (2013) Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol 23(6):260-9 PMID:23481674
- Burrack LS and Berman J (2012) Flexibility of centromere and kinetochore structures. Trends Genet 28(5):204-12 PMID:22445183
- Gascoigne KE and Cheeseman IM (2012) T time for point centromeres. Nat Cell Biol 14(6):559-61 PMID:22561349
- Lampert F and Westermann S (2011) A blueprint for kinetochores - new insights into the molecular mechanics of cell division. Nat Rev Mol Cell Biol 12(7):407-12 PMID:21633384
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Bock LJ, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14(6):614-24 PMID:22561345
- Schleiffer A, et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14(6):604-13 PMID:22561346
- De Wulf P, et al. (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17(23):2902-21 PMID:14633972
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Cho RJ, et al. (1998) Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc Natl Acad Sci U S A 95(7):3752-7 PMID:9520439
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Andrade Latino A and Biggins S (2025) Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein. MicroPubl Biol 2025 PMID:40161439
- Dendooven T, et al. (2023) Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. Sci Adv 9(30):eadg7480 PMID:37506202
- Hinshaw SM, et al. (2023) Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly. Curr Biol 33(4):688-696.e6 PMID:36736323
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Mishra PK, et al. (2021) Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast. Mol Biol Cell 32(21):ar15 PMID:34432494
- Quan Y, et al. (2021) Ctf3/CENP-I provides a docking site for the desumoylase Ulp2 at the kinetochore. J Cell Biol 220(8) PMID:34081091
- Ghodgaonkar-Steger M, et al. (2020) C-Terminal Motifs of the MTW1 Complex Cooperatively Stabilize Outer Kinetochore Assembly in Budding Yeast. Cell Rep 32(13):108190 PMID:32997987
- Hinshaw SM and Harrison SC (2020) The Structural Basis for Kinetochore Stabilization by Cnn1/CENP-T. Curr Biol 30(17):3425-3431.e3 PMID:32679099
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Shahnejat-Bushehri S and Ehrenhofer-Murray AE (2020) The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 117(10):5386-5393 PMID:32079723
- Dhatchinamoorthy K, et al. (2019) The stoichiometry of the outer kinetochore is modulated by microtubule-proximal regulatory factors. J Cell Biol 218(7):2124-2135 PMID:31118239
- Lang J, et al. (2018) An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. Elife 7 PMID:30117803
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Varlakhanova NV, et al. (2017) Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 130(22):3878-3890 PMID:28993463
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Pekgöz Altunkaya G, et al. (2016) CCAN Assembly Configures Composite Binding Interfaces to Promote Cross-Linking of Ndc80 Complexes at the Kinetochore. Curr Biol 26(17):2370-8 PMID:27524485
- Thapa KS, et al. (2015) The Mps1 kinase modulates the recruitment and activity of Cnn1(CENP-T) at Saccharomyces cerevisiae kinetochores. Genetics 200(1):79-90 PMID:25716979
- Hornung P, et al. (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206(4):509-24 PMID:25135934
- Sarangapani KK, et al. (2014) Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346(6206):248-51 PMID:25213378
- Kõivomägi M, et al. (2013) Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20(12):1415-24 PMID:24186061
- Malvezzi F, et al. (2013) A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 32(3):409-23 PMID:23334295
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Bock LJ, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14(6):614-24 PMID:22561345
- Gonen S, et al. (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19(9):925-9 PMID:22885327
- Schleiffer A, et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14(6):604-13 PMID:22561346
- León Ortiz AM, et al. (2011) Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 10(5):506-17 PMID:21459050
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Wong J, et al. (2007) A protein interaction map of the mitotic spindle. Mol Biol Cell 18(10):3800-9 PMID:17634282
- Loog M and Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434(7029):104-8 PMID:15744308
- Measday V, et al. (2005) Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci U S A 102(39):13956-61 PMID:16172405
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Cho RJ, et al. (1998) Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc Natl Acad Sci U S A 95(7):3752-7 PMID:9520439
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Böhm M, et al. (2021) Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle. Elife 10 PMID:34308839
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Bock LJ, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14(6):614-24 PMID:22561345
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Böhm M, et al. (2021) Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle. Elife 10 PMID:34308839
- Ivashov V, et al. (2020) Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids. Elife 9 PMID:32744498
- Bock LJ, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14(6):614-24 PMID:22561345
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Measday V, et al. (2005) Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci U S A 102(39):13956-61 PMID:16172405
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549