Literature Help
MET10 / YFR030W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Li Y, et al. (2022) Impact of serine and serine synthesis genes on H2S release in Saccharomyces cerevisiae during wine fermentation. Food Microbiol 103:103961 PMID:35082078
- Asghari-Paskiabi F, et al. (2020) Population Kinetics and Mechanistic Aspects of Saccharomyces cerevisiae Growth in Relation to Selenium Sulfide Nanoparticle Synthesis. Front Microbiol 11:1019 PMID:32508800
- Zou K, et al. (2020) Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6(32):eaba1306 PMID:32821821
- Choi KM, et al. (2019) Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast. Aging (Albany NY) 11(12):4254-4273 PMID:31254461
- Lage P, et al. (2019) Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of Saccharomyces cerevisiae to stress induced by sulfur dioxide. Microb Cell 6(11):509-523 PMID:31799324
- Huang C, et al. (2014) MET2 affects production of hydrogen sulfide during wine fermentation. Appl Microbiol Biotechnol 98(16):7125-35 PMID:24841117
- Nishimura A, et al. (2013) The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem Biophys Res Commun 430(1):137-43 PMID:23159617
- Stehling O, et al. (2012) MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337(6091):195-9 PMID:22678362
- Winter G, et al. (2011) Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3. AMB Express 1:36 PMID:22044590
- Linderholm A, et al. (2010) Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 76(23):7699-707 PMID:20889780
- Nardi T, et al. (2010) A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology (Reading) 156(Pt 6):1686-1696 PMID:20203053
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Cordente AG, et al. (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9(3):446-59 PMID:19236486
- Kim HS, et al. (2009) Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Res 9(5):713-22 PMID:19456872
- Antunovics Z, et al. (2005) Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1141-50 PMID:15982931
- Park H and Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16(10):881-8 PMID:10870099
- Hansen J, et al. (1997) Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes. FEBS Lett 401(1):20-4 PMID:9003798
- Hosseini-Mazinani SM, et al. (1995) Cloning and sequencing of sulfite reductase alpha subunit gene from Saccharomyces cerevisiae. DNA Res 2(1):15-9 PMID:7788524
- Kuras L and Thomas D (1995) Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation. FEBS Lett 367(1):15-8 PMID:7601277
- Hansen J, et al. (1994) Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176(19):6050-8 PMID:7928966
- Kobayashi K and Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta 705(3):348-56 PMID:6751400
- Masselot M and De Robichon-Szulmajster H (1975) Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet 139(2):121-32 PMID:1101032
- Yoshimoto A and Sato R (1968) Studies on yeast sulfite reductase. II. Partial purification and properties of genetically incomplete sulfite reductases. Biochim Biophys Acta 153(3):576-88 PMID:4384980
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Cachera P, et al. (2024) Genome-wide host-pathway interactions affecting cis-cis-muconic acid production in yeast. Metab Eng 83:75-85 PMID:38428729
- Johnson Z, et al. (2024) Evidence for a hydrogen sulfide-sensing E3 ligase in yeast. Genetics 228(3) PMID:39378345
- Luyt NA, et al. (2024) Physical cell-cell contact elicits specific transcriptomic responses in wine yeast species. Microbiol Spectr 12(8):e0057223 PMID:39012115
- Aulakh SK, et al. (2023) Spontaneously established syntrophic yeast communities improve bioproduction. Nat Chem Biol 19(8):951-961 PMID:37248413
- Börklü E (2023) Methionine restriction and cancer treatment: a systems biology study of yeast to investigate the possible key players. Turk J Biol 47(3):208-217 PMID:37529420
- Wu Y, et al. (2023) Enhanced Ribonucleic Acid Production by High-Throughput Screening Based on Fluorescence Activation and Transcriptomic-Guided Fermentation Optimization in Saccharomyces cerevisiae. J Agric Food Chem 71(17):6673-6680 PMID:37071119
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Minebois R, et al. (2021) Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi-omic analysis. Environ Microbiol 23(6):3059-3076 PMID:33848053
- Sun Y, et al. (2021) A quantitative yeast aging proteomics analysis reveals novel aging regulators. Geroscience 43(5):2573-2593 PMID:34241809
- Wang C, et al. (2018) Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations. Food Microbiol 70:206-213 PMID:29173629
- Chen L, et al. (2017) HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance. Curr Genet 63(2):229-239 PMID:27387517
- Nadai C, et al. (2015) Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Int J Food Microbiol 215:49-56 PMID:26325600
- Förster J, et al. (2014) A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 14(7):1090-100 PMID:25187056
- Laxman S, et al. (2013) Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154(2):416-29 PMID:23870129
- Patil VA, et al. (2013) Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. J Biol Chem 288(3):1696-705 PMID:23192348
- Seeber A, et al. (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27(18):1999-2008 PMID:24029917
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Costenoble R, et al. (2011) Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol 7:464 PMID:21283140
- Hébert A, et al. (2011) Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 11(4):366-78 PMID:21348937
- Lang GI and Murray AW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3:799-811 PMID:21666225
- Mendes-Ferreira A, et al. (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. J Microbiol Biotechnol 20(9):1314-21 PMID:20890097
- Netz DJ, et al. (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6(10):758-65 PMID:20802492
- Yasokawa D, et al. (2010) Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl Biochem Biotechnol 160(6):1685-98 PMID:19499198
- Yu L, et al. (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):219-29 PMID:20617313
- Yu L, et al. (2010) Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(3):313-22 PMID:20024600
- de Melo HF, et al. (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109(1):116-27 PMID:20002866
- Knijnenburg TA, et al. (2009) Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10:53 PMID:19173729
- Lu Y, et al. (2009) Induction of production and secretion beta(1-->4) glucanase with Saccharomyces cerevesiae by replacing the MET10 gene with egl1 gene from Trichoderma reesei. Lett Appl Microbiol 49(6):702-7 PMID:19780951
- Omberg L, et al. (2009) Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol 5:312 PMID:19888207
- Rossouw D and Bauer FF (2009) Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 84(5):937-54 PMID:19711068
- Guo N, et al. (2008) Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast 25(9):631-41 PMID:18727144
- Park H and Hwang YS (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46(5):542-8 PMID:18974956
- Castrillo JI, et al. (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6(2):4 PMID:17439666
- Ferreira TC, et al. (2007) The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 146(1-2):255-263 PMID:17035097
- Kramer RW, et al. (2007) Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog 3(2):e21 PMID:17305427
- Yuan S and Li KC (2007) Context-dependent clustering for dynamic cellular state modeling of microarray gene expression. Bioinformatics 23(22):3039-47 PMID:17846037
- de Groot MJL, et al. (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology (Reading) 153(Pt 11):3864-3878 PMID:17975095
- Barz T, et al. (2006) Control of methionine biosynthesis genes by protein kinase CK2-mediated phosphorylation of Cdc34. Cell Mol Life Sci 63(18):2183-90 PMID:16952051
- Guo X, et al. (2006) Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae. Bioinformatics 22(4):392-9 PMID:16339282
- Swaminathan S, et al. (2006) Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol Biol Cell 17(3):1472-82 PMID:16381815
- Dilda PJ, et al. (2005) Mechanism of selectivity of an angiogenesis inhibitor from screening a genome-wide set of Saccharomyces cerevisiae deletion strains. J Natl Cancer Inst 97(20):1539-47 PMID:16234568
- Kleinschmidt M, et al. (2005) Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Mol Genet Genomics 273(5):382-93 PMID:15843968
- Li X and Wong WH (2005) Sampling motifs on phylogenetic trees. Proc Natl Acad Sci U S A 102(27):9481-6 PMID:15983378
- Panadero J, et al. (2005) Validation of a flour-free model dough system for throughput studies of baker's yeast. Appl Environ Microbiol 71(3):1142-7 PMID:15746311
- Pyerin W, et al. (2005) Protein kinase CK2 in gene control at cell cycle entry. Mol Cell Biochem 274(1-2):189-200 PMID:16335538
- Haugen AC, et al. (2004) Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 5(12):R95 PMID:15575969
- Kohli DK, et al. (2004) A search tool for identification and analysis of conserved sequence patterns in Saccharomyces spp. orthologous promoter. In Silico Biol 4(4):411-5 PMID:15506991
- Parveen M, et al. (2004) Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 54(1):46-55 PMID:15201226
- Barz T, et al. (2003) Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling. J Cell Sci 116(Pt 8):1563-77 PMID:12640040
- Rubin-Bejerano I, et al. (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100(19):11007-12 PMID:12958213
- Donalies UE and Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19(6):475-84 PMID:11921096
- Baudouin-Cornu P, et al. (2001) Molecular evolution of protein atomic composition. Science 293(5528):297-300 PMID:11452124
- Casaregola S, et al. (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51(Pt 4):1607-1618 PMID:11491364
- Rotte C, et al. (2001) Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18(5):710-20 PMID:11319255
- Jelinsky SA and Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96(4):1486-91 PMID:9990050
- Kuras L and Struhl K (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399(6736):609-13 PMID:10376605
- Aoki Y, et al. (1996) Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob Agents Chemother 40(1):127-32 PMID:8787893
- Eki T, et al. (1996) Fifteen open reading frames in a 30.8 kb region of the right arm of chromosome VI from Saccharomyces cerevisiae. Yeast 12(2):177-90 PMID:8686381
- Hansen J and Kielland-Brandt MC (1996) Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Nat Biotechnol 14(11):1587-91 PMID:9634827
- Jiranek V, et al. (1996) Determination of sulphite reductase activity and its response to assimilable nitrogen status in a commercial Saccharomyces cerevisiae wine yeast. J Appl Bacteriol 81(3):329-36 PMID:8810060
- Jiranek V, et al. (1995) Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl Environ Microbiol 61(2):461-7 PMID:7574581
- Murakami Y, et al. (1995) Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat Genet 10(3):261-8 PMID:7670463
- Thomas D, et al. (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138(10):2021-8 PMID:1479340
- Liebman SW, et al. (1984) Yeast amber suppressors corresponding to tRNA3Leu genes. J Mol Biol 178(2):209-26 PMID:6387150
- Kobayashi K and Yoshimoto A (1982) Studies on yeast sulfite reductase. V. Effects of ionic strength on enzyme activities. Biochim Biophys Acta 709(1):38-45 PMID:6758853
- Kobayashi K and Yoshimoto A (1982) Studies on yeast sulfite reductase. VI. Use of the effects of ionic strength as a probe for enzyme structure and mechanism. Biochim Biophys Acta 709(1):46-52 PMID:6758854
- Toh-e A, et al. (1981) Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae. J Bacteriol 145(1):221-32 PMID:7007314
- Dicarprio L and Hastings PJ (1976) Gene conversion and intragenic recombination at the SUP6 locus and the surrounding region in Saccharomyces cerevisiae. Genetics 84(4):697-721 PMID:795715
- Yoshimoto A and Sato R (1970) Studies on yeast sulfite reductase. 3. Further characterization. Biochim Biophys Acta 220(2):190-205 PMID:4395131
- Yoshimoto A and Sato R (1968) Studies on yeast sulfite reductase. I. Purification and characterization. Biochim Biophys Acta 153(3):555-75 PMID:4384979
Reviews
No reviews curated.
Download References (.nbib)
- Santos LO, et al. (2022) Glutathione production by Saccharomyces cerevisiae: current state and perspectives. Appl Microbiol Biotechnol 106(5-6):1879-1894 PMID:35182192
- Dzialo MC, et al. (2017) Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 41(Supp_1):S95-S128 PMID:28830094
- Kaniak-Golik A and Skoneczna A (2015) Mitochondria-nucleus network for genome stability. Free Radic Biol Med 82:73-104 PMID:25640729
- Divol B, et al. (2012) Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95(3):601-13 PMID:22669635
- Ljungdahl PO and Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190(3):885-929 PMID:22419079
- Wysocki R and Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34(6):925-51 PMID:20374295
- Mendoza-Cózatl D, et al. (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653-71 PMID:16102596
- Schuller D and Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68(3):292-304 PMID:15856224
- Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56(5-6):577-88 PMID:11601604
- Thomas D and Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61(4):503-32 PMID:9409150
- Hammond JR (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11(16):1613-27 PMID:8720067
- Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52(2):248-73 PMID:3045517
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Cordente AG, et al. (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9(3):446-59 PMID:19236486
- Hansen J, et al. (1994) Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176(19):6050-8 PMID:7928966
- Kobayashi K and Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta 705(3):348-56 PMID:6751400
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Zou K, et al. (2020) Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6(32):eaba1306 PMID:32821821
- Linderholm A, et al. (2010) Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 76(23):7699-707 PMID:20889780
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Cordente AG, et al. (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9(3):446-59 PMID:19236486
- Park H and Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16(10):881-8 PMID:10870099
- Masselot M and De Robichon-Szulmajster H (1975) Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet 139(2):121-32 PMID:1101032
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Lee J, et al. (2025) Acetic acid-induced stress granules function as scaffolding complexes for Hog1 activation by Pbs2. J Cell Biol 224(5) PMID:40067148
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Eisenberg-Bord M, et al. (2021) Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels. J Cell Biol 220(11) PMID:34694322
- Ghosh C, et al. (2021) Phosphorylation of Pal2 by the protein kinases Kin1 and Kin2 modulates HAC1 mRNA splicing in the unfolded protein response in yeast. Sci Signal 14(684) PMID:34035143
- Jain N, et al. (2021) 14-3-3 Protein Bmh1 triggers short-range compaction of mitotic chromosomes by recruiting sirtuin deacetylase Hst2. J Biol Chem 296:100078 PMID:33187982
- Cepeda LPP, et al. (2019) The ribosome assembly factor Nop53 controls association of the RNA exosome with pre-60S particles in yeast. J Biol Chem 294(50):19365-19380 PMID:31662437
- Rössler I, et al. (2019) Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 47(13):6984-7002 PMID:31062022
- Schmidt O, et al. (2019) Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J 38(15):e101433 PMID:31368600
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Samra N, et al. (2015) The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 16:17 PMID:26404137
- Srikumar T, et al. (2013) A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome. Mol Syst Biol 9:668 PMID:23712011
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Martinez JS, et al. (2012) Acm1 contributes to nuclear positioning by inhibiting Cdh1-substrate interactions. Cell Cycle 11(2):384-94 PMID:22189709
- Moehle EA, et al. (2012) The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 8(11):e1003101 PMID:23209445
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Stehling O, et al. (2012) MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337(6091):195-9 PMID:22678362
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Kaake RM, et al. (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9(4):2016-29 PMID:20170199
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Guerrero C, et al. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 105(36):13333-8 PMID:18757749
- Deutscher D, et al. (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38(9):993-8 PMID:16941010
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Lopreiato R, et al. (2004) Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem J 377(Pt 2):395-405 PMID:14519092
- Pan X, et al. (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16(3):487-96 PMID:15525520
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Blaszczak E, et al. (2024) Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 23(1):100695 PMID:38101750
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Alfatah M, et al. (2019) Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. Chemosphere 228:219-231 PMID:31029968
- Henriques SF, et al. (2017) Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. Biotechnol Biofuels 10:96 PMID:28428821
- Ellahi A, et al. (2015) The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains. Genetics 200(2):505-21 PMID:25823445
- Carrillo E, et al. (2012) Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Mol Biol Cell 23(10):1928-42 PMID:22438580
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID:22114689
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Cai H, et al. (2006) Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics 172(3):1459-76 PMID:16361226
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Dilda PJ, et al. (2005) Mechanism of selectivity of an angiogenesis inhibitor from screening a genome-wide set of Saccharomyces cerevisiae deletion strains. J Natl Cancer Inst 97(20):1539-47 PMID:16234568
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Wilson WA, et al. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1(3):232-42 PMID:12096123