Literature Help
IOC3 / YFR013W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Li L, et al. (2024) Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 31(2):266-274 PMID:38177688
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID:37486771
- Eriksson PR and Clark DJ (2021) The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 11(1):4195 PMID:33602956
- Bhardwaj SK, et al. (2020) Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat Commun 11(1):5913 PMID:33219211
- Shen Q, et al. (2017) The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochem J 474(20):3455-3469 PMID:28899943
- Chen YF, et al. (2016) Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 36(15):2039-50 PMID:27185881
- Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 167(3):709-721.e12 PMID:27768892
- Li M, et al. (2015) Dynamic regulation of transcription factors by nucleosome remodeling. Elife 4 PMID:26047462
- Krajewski WA (2014) Isw1a does not have strict limitations on the length of extranucleosomal DNAs for mobilization of nucleosomes assembled with HeLa cell histones. J Biomol Struct Dyn 32(4):523-31 PMID:23581908
- Krajewski WA (2013) Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities. Biochemistry 52(40):6940-9 PMID:24050724
- De Cian A, et al. (2012) ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA. PLoS One 7(2):e31845 PMID:22359636
- Smolle M, et al. (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884-92 PMID:22922743
- Yen K, et al. (2012) Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149(7):1461-73 PMID:22726434
- Yamada K, et al. (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472(7344):448-53 PMID:21525927
- Pinskaya M, et al. (2009) Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol Cell Biol 29(9):2419-30 PMID:19273607
- Vanti M, et al. (2009) Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 5(1):e1000339 PMID:19148280
- Gangaraju VK and Bartholomew B (2007) Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol 27(8):3217-25 PMID:17283061
- Mueller JE and Bryk M (2007) Isw1 acts independently of the Isw1a and Isw1b complexes in regulating transcriptional silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. J Mol Biol 371(1):1-10 PMID:17561109
- Stockdale C, et al. (2006) Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem 281(24):16279-88 PMID:16606615
- Morillon A, et al. (2003) Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115(4):425-35 PMID:14622597
- Vary JC, et al. (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80-91 PMID:12482963
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Amigo R, et al. (2023) Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 24(20) PMID:37894925
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Liu G, et al. (2021) A deformation energy model reveals sequence-dependent property of nucleosome positioning. Chromosoma 130(1):27-40 PMID:33452566
- Chen Y, et al. (2019) Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells. Cell Syst 9(2):129-142.e5 PMID:31351919
- Hughes AL and Rando OJ (2015) Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo. G3 (Bethesda) 5(9):1889-97 PMID:26175451
- Hamperl S, et al. (2014) Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 42(1):e2 PMID:24106087
- Vasicova P, et al. (2013) Nuclear import of chromatin remodeler Isw1 is mediated by atypical bipartite cNLS and classical import pathway. Traffic 14(2):176-93 PMID:23121014
- Aravind L and Iyer LM (2012) The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 11(1):119-31 PMID:22186017
- Hota SK, et al. (2012) Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers. Methods Mol Biol 809:381-409 PMID:22113290
- Lafon A, et al. (2012) Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet 8(10):e1002994 PMID:23055944
- Maltby VE, et al. (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32(17):3479-85 PMID:22751925
- Sikorski TW, et al. (2012) Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters. J Biol Chem 287(42):35397-35408 PMID:22902623
- Krajewski WA and Reese JC (2010) SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 30(3):552-64 PMID:19752191
- On T, et al. (2010) The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78(9):2075-89 PMID:20455264
- Gangaraju VK, et al. (2009) Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell 35(1):58-69 PMID:19595716
- Venters BJ and Pugh BF (2009) A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res 19(3):360-71 PMID:19124666
- Yousef AF, et al. (2009) Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae. BMC Mol Biol 10:32 PMID:19374760
- Saguez C, et al. (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 31(1):91-103 PMID:18614048
- Yousef AF, et al. (2008) Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae. Int J Cancer 122(4):942-6 PMID:17957787
- Caesar R, et al. (2006) Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Eukaryot Cell 5(2):368-78 PMID:16467477
- Xella B, et al. (2006) The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 59(5):1531-41 PMID:16468993
- Cuperus G and Shore D (2002) Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8. Genetics 162(2):633-45 PMID:12399377
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Andrade Latino A and Biggins S (2025) Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein. MicroPubl Biol 2025 PMID:40161439
- Li L, et al. (2024) Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 31(2):266-274 PMID:38177688
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID:37486771
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Amigo R, et al. (2022) The linker histone Hho1 modulates the activity of ATP-dependent chromatin remodeling complexes. Biochim Biophys Acta Gene Regul Mech 1865(1):194781 PMID:34963628
- Gavade JN, et al. (2022) Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast. Curr Biol 32(7):1534-1547.e9 PMID:35240051
- Nitika, et al. (2022) Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 20(10):e3001839 PMID:36269765
- Gopalakrishnan R and Winston F (2021) The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions. J Biol Chem 297(4):101205 PMID:34543624
- Perica T, et al. (2021) Systems-level effects of allosteric perturbations to a model molecular switch. Nature 599(7883):152-157 PMID:34646016
- Su XB, et al. (2021) SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 220(7) PMID:33929514
- Bhardwaj SK, et al. (2020) Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat Commun 11(1):5913 PMID:33219211
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Wild P, et al. (2019) Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 75(4):859-874.e4 PMID:31351878
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Shen Q, et al. (2017) The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochem J 474(20):3455-3469 PMID:28899943
- She R, et al. (2017) Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome. Proc Natl Acad Sci U S A 114(14):3619-3624 PMID:28325876
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 167(3):709-721.e12 PMID:27768892
- Yadav T and Whitehouse I (2016) Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes. Cell Rep 15(4):715-723 PMID:27149855
- Parnell TJ, et al. (2015) The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. Elife 4:e06073 PMID:25821983
- Krajewski WA (2014) Isw1a does not have strict limitations on the length of extranucleosomal DNAs for mobilization of nucleosomes assembled with HeLa cell histones. J Biomol Struct Dyn 32(4):523-31 PMID:23581908
- Kurat CF, et al. (2014) Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci U S A 111(39):14124-9 PMID:25228766
- Aristizabal MJ, et al. (2013) High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 9(8):e1003758 PMID:24009531
- Srikumar T, et al. (2013) Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. J Cell Biol 201(1):145-63 PMID:23547032
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Gilmore JM, et al. (2012) Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 11(4):M111.011544 PMID:22199229
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Lafon A, et al. (2012) Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet 8(10):e1002994 PMID:23055944
- Smolle M, et al. (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884-92 PMID:22922743
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Yamada K, et al. (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472(7344):448-53 PMID:21525927
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Brooks MA, et al. (2010) Systematic bioinformatics and experimental validation of yeast complexes reduces the rate of attrition during structural investigations. Structure 18(9):1075-82 PMID:20826334
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Tonikian R, et al. (2009) Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 7(10):e1000218 PMID:19841731
- Saguez C, et al. (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 31(1):91-103 PMID:18614048
- Collins SR, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806-10 PMID:17314980
- Gangaraju VK and Bartholomew B (2007) Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol 27(8):3217-25 PMID:17283061
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Vary JC, et al. (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80-91 PMID:12482963
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Sanders SL, et al. (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723-38 PMID:12052880
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Grosjean N, et al. (2018) Global Deletome Profile of Saccharomyces cerevisiae Exposed to the Technology-Critical Element Yttrium. Front Microbiol 9:2005 PMID:30233513
- Fröhlich F, et al. (2015) The GARP complex is required for cellular sphingolipid homeostasis. Elife 4 PMID:26357016
- Dong K, et al. (2013) The yeast copper response is regulated by DNA damage. Mol Cell Biol 33(20):4041-50 PMID:23959798
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Shively CA, et al. (2013) Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression. Genetics 193(4):1297-310 PMID:23410832
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Copic A, et al. (2009) Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182(3):757-69 PMID:19433630
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Yadav J, et al. (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18(4):1480-9 PMID:17314395
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Marston AL, et al. (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303(5662):1367-70 PMID:14752166
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549