Literature Help
VTC2 / YFL004W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 127
- Aliases
-
PHM1
5
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Liu W, et al. (2023) Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 42(10):e113320 PMID:37066886
- Pipercevic J, et al. (2023) Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 14(1):2645 PMID:37156835
- Umeda C, et al. (2023) Overexpression of polyphosphate polymerases and deletion of polyphosphate phosphatases shorten the replicative lifespan in yeast. FEBS Lett 597(18):2316-2333 PMID:37574219
- Zhao F, et al. (2023) Disruption of phosphate metabolism and sterol transport-related genes conferring yeast resistance to vanillin and rapid ethanol production. Bioresour Technol 369:128489 PMID:36528179
- Wu Z, et al. (2022) The entry of unclosed autophagosomes into vacuoles and its physiological relevance. PLoS Genet 18(10):e1010431 PMID:36227834
- Zhou M, et al. (2021) One-Step Biosynthesis of Vitamin C in Saccharomyces cerevisiae. Front Microbiol 12:643472 PMID:33717042
- Zhao YY, et al. (2020) Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3 (Bethesda) 10(2):479-488 PMID:31836620
- Wild R and Hothorn M (2017) The macro domain as fusion tag for carrier-driven crystallization. Protein Sci 26(2):365-374 PMID:27774698
- Wild R, et al. (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986-90 PMID:27080106
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Emrick D, et al. (2013) The antifungal occidiofungin triggers an apoptotic mechanism of cell death in yeast. J Nat Prod 76(5):829-38 PMID:23672235
- Sukhai MA, et al. (2013) Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 123(1):315-28 PMID:23202731
- Malcher M, et al. (2011) The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187(3):717-30 PMID:21149646
- Hothorn M, et al. (2009) Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324(5926):513-6 PMID:19390046
- Wiederhold E, et al. (2009) The yeast vacuolar membrane proteome. Mol Cell Proteomics 8(2):380-92 PMID:19001347
- Uttenweiler A, et al. (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166-75 PMID:17079729
- Auesukaree C, et al. (2004) Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem 279(17):17289-94 PMID:14966138
- Müller O, et al. (2003) Role of the Vtc proteins in V-ATPase stability and membrane trafficking. J Cell Sci 116(Pt 6):1107-15 PMID:12584253
- Müller O, et al. (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21(3):259-69 PMID:11823419
- Ogawa N, et al. (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11(12):4309-21 PMID:11102525
- Cohen A, et al. (1999) A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem 274(38):26885-93 PMID:10480897
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Eliseeva IA, et al. (2024) Ppn2 Polyphosphatase Improves the Ability of S. cerevisiae to Grow in Mild Alkaline Medium. J Fungi (Basel) 10(11) PMID:39590716
- Dannenmaier S, et al. (2021) Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 297(5):101050 PMID:34571008
- Ebrahimi M, et al. (2021) Phosphate Restriction Promotes Longevity via Activation of Autophagy and the Multivesicular Body Pathway. Cells 10(11) PMID:34831384
- He CW, et al. (2021) Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase. BMC Biol 19(1):117 PMID:34088313
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Gomes-Vieira AL, et al. (2018) Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet Biol 115:20-32 PMID:29627365
- Gerasimaite R, et al. (2017) Inositol Pyrophosphate Specificity of the SPX-Dependent Polyphosphate Polymerase VTC. ACS Chem Biol 12(3):648-653 PMID:28186404
- Desfougères Y, et al. (2016) Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast. J Biol Chem 291(42):22262-22275 PMID:27587415
- Wu M, et al. (2016) Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 113(44):E6757-E6765 PMID:27791083
- Vardi N, et al. (2014) Sequential feedback induction stabilizes the phosphate starvation response in budding yeast. Cell Rep 9(3):1122-34 PMID:25437565
- Vincent M, et al. (2014) Surveying the floodgates: estimating protein flux into the endoplasmic reticulum lumen in Saccharomyces cerevisiae. Front Physiol 5:444 PMID:25431559
- Vardi N, et al. (2013) Budding yeast escape commitment to the phosphate starvation program using gene expression noise. Curr Biol 23(20):2051-7 PMID:24094854
- Mijaljica D, et al. (2012) A late form of nucleophagy in Saccharomyces cerevisiae. PLoS One 7(6):e40013 PMID:22768199
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Lang GI and Murray AW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3:799-811 PMID:21666225
- Kavanaugh LA and Dietrich FS (2009) Non-coding RNA prediction and verification in Saccharomyces cerevisiae. PLoS Genet 5(1):e1000321 PMID:19119416
- Krick R, et al. (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19(10):4492-505 PMID:18701704
- Freimoser FM, et al. (2006) Systematic screening of polyphosphate (poly P) levels in yeast mutant cells reveals strong interdependence with primary metabolism. Genome Biol 7(11):R109 PMID:17107617
- Houalla R, et al. (2006) Microarray detection of novel nuclear RNA substrates for the exosome. Yeast 23(6):439-54 PMID:16652390
- Tanaka F, et al. (2006) Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Food Microbiol 23(8):717-28 PMID:16943074
- Gonze D, et al. (2005) Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs. Bioinformatics 21(17):3490-500 PMID:15998664
- Uttenweiler A, et al. (2005) Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem 280(39):33289-97 PMID:16055436
- Murakami Y, et al. (1995) Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat Genet 10(3):261-8 PMID:7670463
Reviews
No reviews curated.
Download References (.nbib)
- Khan A, et al. (2024) The ring rules the chain - inositol pyrophosphates and the regulation of inorganic polyphosphate. Biochem Soc Trans 52(2):567-580 PMID:38629621
- McCarthy L and Downey M (2023) The emerging landscape of eukaryotic polyphosphatases. FEBS Lett 597(11):1447-1461 PMID:36694267
- Sieńko K, et al. (2020) Microautophagy in Plants: Consideration of Its Molecular Mechanism. Cells 9(4) PMID:32260410
- Bentley-DeSousa A and Downey M (2019) From underlying chemistry to therapeutic potential: open questions in the new field of lysine polyphosphorylation. Curr Genet 65(1):57-64 PMID:29881919
- Parzych KR and Klionsky DJ (2019) Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 15(2):212-227 PMID:30422029
- Nehls U and Plassard C (2018) Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol 220(4):1047-1058 PMID:29888395
- Ikeh M, et al. (2017) Phosphate Acquisition and Virulence in Human Fungal Pathogens. Microorganisms 5(3) PMID:28829379
- Yang SY, et al. (2017) Role of vacuoles in phosphorus storage and remobilization. J Exp Bot 68(12):3045-3055 PMID:28077447
- Gerasimaitė R and Mayer A (2016) Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans 44(1):234-9 PMID:26862210
- Jiménez J, et al. (2016) Phosphate: from stardust to eukaryotic cell cycle control. Int Microbiol 19(3):133-141 PMID:28494083
- Qi W, et al. (2016) Pi sensing and signalling: from prokaryotic to eukaryotic cells. Biochem Soc Trans 44(3):766-73 PMID:27284040
- Tomar P and Sinha H (2014) Conservation of PHO pathway in ascomycetes and the role of Pho84. J Biosci 39(3):525-36 PMID:24845516
- Secco D, et al. (2012) The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol 193(4):842-51 PMID:22403821
- Secco D, et al. (2012) Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 586(4):289-95 PMID:22285489
- Sambuk EV, et al. (2011) Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011:356093 PMID:21785706
- Armstrong J (2010) Yeast vacuoles: more than a model lysosome. Trends Cell Biol 20(10):580-5 PMID:20685121
- Mijaljica D, et al. (2010) The intricacy of nuclear membrane dynamics during nucleophagy. Nucleus 1(3):213-23 PMID:21327066
- Li SC and Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793(4):650-63 PMID:18786576
- Ostrowicz CW, et al. (2008) Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy 4(1):5-19 PMID:17932463
- Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21(6):1241-7 PMID:11889030
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Uttenweiler A, et al. (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166-75 PMID:17079729
- Müller O, et al. (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21(3):259-69 PMID:11823419
- Ogawa N, et al. (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11(12):4309-21 PMID:11102525
- Cohen A, et al. (1999) A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem 274(38):26885-93 PMID:10480897
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Umeda C, et al. (2023) Overexpression of polyphosphate polymerases and deletion of polyphosphate phosphatases shorten the replicative lifespan in yeast. FEBS Lett 597(18):2316-2333 PMID:37574219
- Zhao F, et al. (2023) Disruption of phosphate metabolism and sterol transport-related genes conferring yeast resistance to vanillin and rapid ethanol production. Bioresour Technol 369:128489 PMID:36528179
- Zhao YY, et al. (2020) Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3 (Bethesda) 10(2):479-488 PMID:31836620
- Uttenweiler A, et al. (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166-75 PMID:17079729
- Ogawa N, et al. (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11(12):4309-21 PMID:11102525
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Casler JC, et al. (2024) Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution. J Cell Biol 223(9) PMID:38781029
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Choudhry SK, et al. (2023) Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 222(9) PMID:37358474
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Liu W, et al. (2023) Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 42(10):e113320 PMID:37066886
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Pipercevic J, et al. (2023) Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 14(1):2645 PMID:37156835
- Umeda C, et al. (2023) Overexpression of polyphosphate polymerases and deletion of polyphosphate phosphatases shorten the replicative lifespan in yeast. FEBS Lett 597(18):2316-2333 PMID:37574219
- Drwesh L, et al. (2022) A network of cytosolic (co)chaperones promotes the biogenesis of mitochondrial signal-anchored outer membrane proteins. Elife 11 PMID:35876647
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Vargas Duarte P, et al. (2022) The yeast LYST homolog Bph1 is a Rab5 effector and prevents Atg8 lipidation at endosomes. J Cell Sci 135(8) PMID:35343566
- Lemus L, et al. (2021) Post-ER degradation of misfolded GPI-anchored proteins is linked with microautophagy. Curr Biol 31(18):4025-4037.e5 PMID:34314677
- Leng H, et al. (2021) FACT interacts with Set3 HDAC and fine-tunes GAL1 transcription in response to environmental stimulation. Nucleic Acids Res 49(10):5502-5519 PMID:33963860
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Schoppe J, et al. (2020) AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 39(20):e105117 PMID:32840906
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Opaliński Ł, et al. (2018) Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis. Cell Rep 25(8):2036-2043.e5 PMID:30463002
- Geva Y, et al. (2017) Two novel effectors of trafficking and maturation of the yeast plasma membrane H+ -ATPase. Traffic 18(10):672-682 PMID:28727280
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Delaveau T, et al. (2016) Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae. Nucleic Acids Res 44(18):8826-8841 PMID:27580715
- Desfougères Y, et al. (2016) Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast. J Biol Chem 291(42):22262-22275 PMID:27587415
- Hill SM, et al. (2016) Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions. Cell Rep 16(3):826-38 PMID:27373154
- Cary GA, et al. (2015) Proteomic Analysis of Dhh1 Complexes Reveals a Role for Hsp40 Chaperone Ydj1 in Yeast P-Body Assembly. G3 (Bethesda) 5(11):2497-511 PMID:26392412
- Ho KL, et al. (2015) A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 11(3):e1005109 PMID:25822502
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Atencio D, et al. (2014) The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. G3 (Bethesda) 4(3):523-37 PMID:24470217
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Snider J, et al. (2013) Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9(9):565-72 PMID:23831759
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Michelot A, et al. (2010) Reconstitution and protein composition analysis of endocytic actin patches. Curr Biol 20(21):1890-9 PMID:21035341
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Uttenweiler A, et al. (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166-75 PMID:17079729
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Miller JP, et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102(34):12123-8 PMID:16093310
- Müller O, et al. (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21(3):259-69 PMID:11823419
- Ogawa N, et al. (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11(12):4309-21 PMID:11102525
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Chen YC, et al. (2018) Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7 PMID:30516470
- Fang NN, et al. (2014) Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16(12):1227-37 PMID:25344756
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Weinert BT, et al. (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4(4):842-51 PMID:23954790
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Huber A, et al. (2009) Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 23(16):1929-43 PMID:19684113
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Zhao YY, et al. (2020) Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3 (Bethesda) 10(2):479-488 PMID:31836620
- Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
- Fang NN, et al. (2014) Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16(12):1227-37 PMID:25344756
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Sukhai MA, et al. (2013) Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 123(1):315-28 PMID:23202731
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Servienė E, et al. (2012) Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS One 7(12):e50779 PMID:23227207
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Freimoser FM, et al. (2006) Systematic screening of polyphosphate (poly P) levels in yeast mutant cells reveals strong interdependence with primary metabolism. Genome Biol 7(11):R109 PMID:17107617
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208