Literature Help
URA1 / YKL216W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Sukkurwala AQ, et al. (2014) Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 21(1):59-68 PMID:23787997
- Carlsson M, et al. (2013) A Ham1p-dependent mechanism and modulation of the pyrimidine biosynthetic pathway can both confer resistance to 5-fluorouracil in yeast. PLoS One 8(10):e52094 PMID:24124444
- Sprouse RO, et al. (2008) Function and structural organization of Mot1 bound to a natural target promoter. J Biol Chem 283(36):24935-48 PMID:18606810
- Sarry JE, et al. (2007) Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. FEBS J 274(16):4287-305 PMID:17651441
- Zameitat E, et al. (2007) Dihydroorotate dehydrogenase from Saccharomyces cerevisiae: spectroscopic investigations with the recombinant enzyme throw light on catalytic properties and metabolism of fumarate analogues. FEMS Yeast Res 7(6):897-904 PMID:17617217
- Hall C, et al. (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4(6):1102-15 PMID:15947202
- Gojković Z, et al. (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genomics 271(4):387-93 PMID:15014982
- Zameitat E, et al. (2004) Two different dihydroorotate dehydrogenases from yeast Saccharomyces kluyveri. FEBS Lett 568(1-3):129-34 PMID:15196933
- Vorísek J, et al. (2002) Enzymatic activities of Ura2 and Ura1 proteins (aspartate carbamoyltransferase and dihydro-orotate dehydrogenase) are present in both isolated membranes and cytoplasm of Saccharomyces cerevisiae. Yeast 19(5):449-57 PMID:11921093
- Jordan DB, et al. (2000) Catalytic properties of dihydroorotate dehydrogenase from Saccharomyces cerevisiae: studies on pH, alternate substrates, and inhibitors. Arch Biochem Biophys 378(1):84-92 PMID:10871048
- Denis V, et al. (1998) Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 30(3):557-66 PMID:9822821
- Tzermia M, et al. (1994) The complete sequencing of a 24.6 kb segment of yeast chromosome XI identified the known loci URA1, SAC1 and TRP3, and revealed 6 new open reading frames including homologues to the threonine dehydratases, membrane transporters, hydantoinases and the phospholipase A2-activating protein. Yeast 10(5):663-79 PMID:7941750
- Vorísek J, et al. (1993) Ultracytochemical localization of dihydroorotate dehydrogenase in mitochondria and vacuoles of Saccharomyces cerevisiae. Folia Microbiol (Praha) 38(1):59-67 PMID:8500781
- Minet M, et al. (1992) Cloning and sequencing of a human cDNA coding for dihydroorotate dehydrogenase by complementation of the corresponding yeast mutant. Gene 121(2):393-6 PMID:1446837
- Minet M, et al. (1992) Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2(3):417-22 PMID:1303803
- Nagy M, et al. (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci U S A 89(19):8966-70 PMID:1409592
- Roy A (1992) Nucleotide sequence of the URA1 gene of Saccharomyces cerevisiae. Gene 118(1):149-50 PMID:1511880
- Roy A, et al. (1990) cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol 10(10):5257-70 PMID:2204810
- Losson R, et al. (1985) Yeast promoters URA1 and URA3. Examples of positive control. J Mol Biol 185(1):65-81 PMID:3900423
- Pelsy F and Lacroute F (1984) Effect of ochre nonsense mutations on yeast URA1 mRNA stability. Curr Genet 8(4):277-82 PMID:24177796
- Jacquet M, et al. (1982) A fragment of Dictyostelium discoideum genomic DNA that complements the URA1 mutation of Saccharomyces cerivisiae. J Mol Appl Genet 1(6):513-25 PMID:6296254
- Loison G and Jund R (1981) Expression of a cloned Saccharomyces cerevisiae gene (URA1) is controlled by a bacterial promoter in E. coli and by a yeast promoter in S. cerevisiae. Gene 15(2-3):127-37 PMID:6271637
- Loison G, et al. (1981) Evidence for transcriptional regulation of dihydroorotic acid dehydrogenase in Saccharomyces cerevisiae. Curr Genet 3(2):119-23 PMID:24190057
- Guerry-Kopecko P and Wickner RB (1980) Cloning of the URA1 gene of Saccharomyces cerevisiae. J Bacteriol 143(3):1530-3 PMID:6251032
- Bach ML and Lacroute F (1972) Direct selective techniques for the isolation of pyrimidine auxotrophs in yeast. Mol Gen Genet 115(2):126-30 PMID:4554474
- Jund R and Lacroute F (1972) Regulation of orotidylic acid pyrophosphorylase in Saccharomyces cerevisiae. J Bacteriol 109(1):196-202 PMID:4550660
- Lacroute F (1968) Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 95(3):824-32 PMID:5651325
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Gautam V, et al. (2025) scCamAge: A context-aware prediction engine for cellular age, aging-associated bioactivities, and morphometrics. Cell Rep 44(2):115270 PMID:39918957
- Aulakh SK, et al. (2023) Spontaneously established syntrophic yeast communities improve bioproduction. Nat Chem Biol 19(8):951-961 PMID:37248413
- Pinder C, et al. (2023) Characterisation of putative class 1A DHODH-like proteins from Mucorales and dematiaceous mould species. PLoS One 18(8):e0289441 PMID:37531380
- Rossio V, et al. (2023) Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742. Proteomes 11(4) PMID:37873872
- Bouwknegt J, et al. (2022) Identification of fungal dihydrouracil-oxidase genes by expression in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 115(11):1363-1378 PMID:36241945
- Fang W, et al. (2022) Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation. Cell Rep 39(2):110672 PMID:35417718
- Bouwknegt J, et al. (2021) Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biol Biotechnol 8(1):10 PMID:34656184
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Hermansen RA, et al. (2015) Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast. BMC Evol Biol 15:232 PMID:26511837
- Dos Santos SC, et al. (2012) Quantitative- and phospho-proteomic analysis of the yeast response to the tyrosine kinase inhibitor imatinib to pharmacoproteomics-guided drug line extension. OMICS 16(10):537-51 PMID:22775238
- Fournier CT, et al. (2012) Amino termini of many yeast proteins map to downstream start codons. J Proteome Res 11(12):5712-9 PMID:23140384
- Gamberi T, et al. (2012) Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach. Proteomics 12(11):1767-80 PMID:22623105
- Zhu J, et al. (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 10(4):e1001301 PMID:22509135
- Cole HA, et al. (2011) Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes. Nucleic Acids Res 39(22):9521-35 PMID:21880600
- Jamonnak N, et al. (2011) Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17(11):2011-25 PMID:21954178
- Ke H, et al. (2011) Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function. Eukaryot Cell 10(8):1053-61 PMID:21685321
- Gardarin A, et al. (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76(4):1034-48 PMID:20444096
- Ishizaki H, et al. (2010) Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation. Dis Model Mech 3(9-10):639-51 PMID:20713646
- Song YB, et al. (2010) Quantitative proteomic analysis of ribosomal protein L35b mutant of Saccharomyces cerevisiae. Biochim Biophys Acta 1804(4):676-83 PMID:19879384
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Gordon JL, et al. (2009) Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 5(5):e1000485 PMID:19436716
- Romero-Santacreu L, et al. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15(6):1110-20 PMID:19369426
- Selpi, et al. (2009) Predicting functional upstream open reading frames in Saccharomyces cerevisiae. BMC Bioinformatics 10:451 PMID:20042076
- Ansel J, et al. (2008) Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet 4(4):e1000049 PMID:18404214
- Kwapisz M, et al. (2008) Mutations of RNA polymerase II activate key genes of the nucleoside triphosphate biosynthetic pathways. EMBO J 27(18):2411-21 PMID:18716630
- Pham TK and Wright PC (2008) The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res 7(11):4766-74 PMID:18808174
- Snitkin ES, et al. (2008) Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol 9(9):R140 PMID:18808699
- Wiebe MG, et al. (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8(1):140-54 PMID:17425669
- Bundy JG, et al. (2007) Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Res 17(4):510-9 PMID:17339370
- Castrillo JI, et al. (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6(2):4 PMID:17439666
- Vemuri GN, et al. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(7):2402-7 PMID:17287356
- Jablonka W, et al. (2006) Deviation of carbohydrate metabolism by the SIT4 phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta 1760(8):1281-91 PMID:16764994
- Le Moan N, et al. (2006) The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281(15):10420-30 PMID:16418165
- Slattery MG, et al. (2006) The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae. Eukaryot Cell 5(2):313-20 PMID:16467472
- Abraham DS and Vershon AK (2005) N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Eukaryot Cell 4(11):1808-19 PMID:16278448
- Bro C, et al. (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465-72 PMID:16269670
- Dasgupta A, et al. (2005) Mot1-mediated control of transcription complex assembly and activity. EMBO J 24(9):1717-29 PMID:15861138
- Bro C, et al. (2003) Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J Biol Chem 278(34):32141-9 PMID:12791685
- Gola S and Kothe E (2003) An expression system for the functional analysis of pheromone genes in the tetrapolar basidiomycete Schizophyllum commune. J Basic Microbiol 43(2):104-12 PMID:12746852
- Rubin-Bejerano I, et al. (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100(19):11007-12 PMID:12958213
- Zhang W, et al. (2003) Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. J Ind Microbiol Biotechnol 30(1):57-69 PMID:12545388
- Dasgupta A, et al. (2002) Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proc Natl Acad Sci U S A 99(5):2666-71 PMID:11880621
- Lockhart L, et al. (2002) Tools for the study of genome rearrangements in laboratory and industrial yeast strains. Yeast 19(5):441-8 PMID:11921092
- Devaux F, et al. (2001) An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor. EMBO Rep 2(6):493-8 PMID:11415981
- Hauser NC, et al. (2001) Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2(2):69-79 PMID:18628902
- Klebl B, et al. (2001) A comprehensive analysis of gene expression profiles in a yeast N-glycosylation mutant. Biochem Biophys Res Commun 286(4):714-20 PMID:11520056
- Solow SP, et al. (1999) Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. Mol Cell Biol 19(4):2846-52 PMID:10082550
- Ozer J, et al. (1998) Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol 18(5):2559-70 PMID:9566876
- Lollier M, et al. (1995) As in Saccharomyces cerevisiae, aspartate transcarbamoylase is assembled on a multifunctional protein including a dihydroorotase-like cryptic domain in Schizosaccharomyces pombe. Curr Genet 28(2):138-49 PMID:8590465
- Game J, et al. (1994) The use of random-breakage mapping to locate the genes APN1 and YUH1 in the Saccharomyces genome, and to determine gene order near the left end of chromosome XI. Yeast 10(4):543-54 PMID:7524247
- Shen WC, et al. (1993) The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J Biol Chem 268(26):19436-44 PMID:8366091
- Froeliger EH, et al. (1989) Sequence analysis of the URA1 gene encoding orotidine-5'-monophosphate decarboxylase of Schizophyllum commune. Gene 83(2):387-93 PMID:2684794
- Breter HJ, et al. (1987) The mapping of chromosomes in Saccharomyces cerevisiae. I. A cosmid vector designed to establish, by cloning into cdc-mutants, numerous start loci for chromosome walking in the yeast genome. Gene 53(2-3):181-90 PMID:3301531
- Kammerer B, et al. (1984) Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage. J Mol Biol 180(2):239-50 PMID:6096561
- Liljelund P, et al. (1984) Yeast regulatory gene PPR1. II. Chromosomal localization, meiotic map, suppressibility, dominance/recessivity and dosage effect. J Mol Biol 180(2):251-65 PMID:6096562
- Losson R, et al. (1983) In vivo transcription of a eukaryotic regulatory gene. EMBO J 2(12):2179-84 PMID:6321151
- Losson R and Lacroute F (1981) Cloning of a eukaryotic regulatory gene. Mol Gen Genet 184(3):394-9 PMID:6278253
- Loison G, et al. (1980) Constitutive mutants for orotidine 5 phosphate decarboxylase and dihydroorotic acid dehydrogenase in Saccharomyces cerevisiae. Curr Genet 2(1):39-44 PMID:24189721
- Prakash L, et al. (1979) Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol Gen Genet 172(3):249-58 PMID:45608
- Wickner RB and Leibowitz MJ (1979) Mak mutants of yeast: mapping and characterization. J Bacteriol 140(1):154-60 PMID:387719
- Ballou DL (1975) Genetic control of yeast mannan structure: mapping genes mnn2 and mnn4 in Saccharomyces cerevisiae. J Bacteriol 123(2):616-9 PMID:1097420
- Burkl G, et al. (1972) Mapping of a complex gene locus coding for part of the Saccharomyces cerevisiae fatty acid synthetase multienzyme complex. Mol Gen Genet 119(4):315-22 PMID:4567805
- Mortimer RK and Hawthorne DC (1966) Genetic mapping in Saccharomyces. Genetics 53(1):165-73 PMID:5900603
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Jordan DB, et al. (2000) Catalytic properties of dihydroorotate dehydrogenase from Saccharomyces cerevisiae: studies on pH, alternate substrates, and inhibitors. Arch Biochem Biophys 378(1):84-92 PMID:10871048
- Nagy M, et al. (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci U S A 89(19):8966-70 PMID:1409592
- Roy A (1992) Nucleotide sequence of the URA1 gene of Saccharomyces cerevisiae. Gene 118(1):149-50 PMID:1511880
- Jund R and Lacroute F (1972) Regulation of orotidylic acid pyrophosphorylase in Saccharomyces cerevisiae. J Bacteriol 109(1):196-202 PMID:4550660
- Lacroute F (1968) Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 95(3):824-32 PMID:5651325
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Carlsson M, et al. (2013) A Ham1p-dependent mechanism and modulation of the pyrimidine biosynthetic pathway can both confer resistance to 5-fluorouracil in yeast. PLoS One 8(10):e52094 PMID:24124444
- Bach ML and Lacroute F (1972) Direct selective techniques for the isolation of pyrimidine auxotrophs in yeast. Mol Gen Genet 115(2):126-30 PMID:4554474
- Lacroute F (1968) Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 95(3):824-32 PMID:5651325
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Courtin B, et al. (2023) Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol 2023 PMID:37746059
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Barkova A, et al. (2022) A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 13(1):26 PMID:36401307
- Vargas Duarte P, et al. (2022) The yeast LYST homolog Bph1 is a Rab5 effector and prevents Atg8 lipidation at endosomes. J Cell Sci 135(8) PMID:35343566
- Kochan DZ, et al. (2021) The RNA-binding protein Puf5 contributes to buffering of mRNA upon chromatin-mediated changes in nascent transcription. J Cell Sci 134(15) PMID:34350963
- Gotor NL, et al. (2020) RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res 48(17):9491-9504 PMID:32857852
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Speldewinde SH, et al. (2017) Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 13(4):e1006708 PMID:28369054
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Srivas R, et al. (2016) A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 63(3):514-25 PMID:27453043
- Steunou AL, et al. (2016) Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Mol Cell Biol 36(22):2768-2781 PMID:27550811
- Ho KL, et al. (2015) A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 11(3):e1005109 PMID:25822502
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Sung MK, et al. (2013) Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res 23(4):736-46 PMID:23403034
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- García-Gómez JJ, et al. (2011) Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Mol Cell Biol 31(20):4156-64 PMID:21825077
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Staresincic L, et al. (2011) GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J Biol Chem 286(41):35553-35561 PMID:21844196
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Ossareh-Nazari B, et al. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11(7):548-54 PMID:20508643
- Phan VT, et al. (2010) The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol Cell Biol 30(9):2264-79 PMID:20160012
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Demmel L, et al. (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19(5):1991-2002 PMID:18287542
- Guerrero C, et al. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 105(36):13333-8 PMID:18757749
- Deutscher D, et al. (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38(9):993-8 PMID:16941010
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Weinert BT, et al. (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4(4):842-51 PMID:23954790
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
Functional Complementation Annotations Literature
Paper(s) associated with one or more pieces of functional complementation annotations evidence in SGD.
No functional complementation annotations literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Baruffini E, et al. (2020) Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study. Sci Rep 10(1):10524 PMID:32601343
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Novarina D, et al. (2020) A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3 (Bethesda) 10(6):1853-1867 PMID:32265288
- Johnson AJ, et al. (2016) Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8(5):542-50 PMID:27146641
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Dong K, et al. (2013) The yeast copper response is regulated by DNA damage. Mol Cell Biol 33(20):4041-50 PMID:23959798
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Lis M, et al. (2013) Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva. Antimicrob Agents Chemother 57(2):840-7 PMID:23208710
- Samanfar B, et al. (2013) Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. Mol Biosyst 9(6):1351-9 PMID:23467670
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Yu D, et al. (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623 PMID:23151179
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Jo WJ, et al. (2009) Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae. BMC Genomics 10:130 PMID:19321002
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Cohen BA, et al. (2002) Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol Biol Cell 13(5):1608-14 PMID:12006656
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549