Literature Help
PAN3 / YKL025C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 109
- Aliases
-
ECM35
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Bhagwat M, et al. (2021) Replication stress inhibits synthesis of histone mRNAs in yeast by removing Spt10p and Spt21p from the histone promoters. J Biol Chem 297(5):101246 PMID:34582893
- Tang TTL, et al. (2019) The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat Struct Mol Biol 26(6):433-442 PMID:31110294
- Wang Y, et al. (2018) The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 10(12):1755-1776 PMID:30358795
- Schäfer IB, et al. (2014) The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat Struct Mol Biol 21(7):591-8 PMID:24880344
- Wolf J, et al. (2014) Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J 33(14):1514-26 PMID:24872509
- Estruch F, et al. (2009) A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 281(1):125-34 PMID:19034519
- Mangus DA, et al. (2004) Positive and negative regulation of poly(A) nuclease. Mol Cell Biol 24(12):5521-33 PMID:15169912
- Hammet A, et al. (2002) Posttranscriptional regulation of the RAD5 DNA repair gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of replication blocks. J Biol Chem 277(25):22469-74 PMID:11953437
- Brown CE and Sachs AB (1998) Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 18(11):6548-59 PMID:9774670
- Lew JE, et al. (1998) Telomere length regulation and telomeric chromatin require the nonsense-mediated mRNA decay pathway. Mol Cell Biol 18(10):6121-30 PMID:9742129
- Brown CE, et al. (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5744-53 PMID:8816488
- Lowell JE, et al. (1992) 3'-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev 6(11):2088-99 PMID:1358757
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Martani F, et al. (2015) The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci Rep 5:18318 PMID:26658950
- Schmid M, et al. (2012) Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins. Mol Cell 47(2):267-80 PMID:22683267
- Ito W, et al. (2011) RNA-binding protein Khd1 and Ccr4 deadenylase play overlapping roles in the cell wall integrity pathway in Saccharomyces cerevisiae. Eukaryot Cell 10(10):1340-7 PMID:21873511
- Reijns MA, et al. (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121(Pt 15):2463-72 PMID:18611963
- Zimmer SL, et al. (2008) Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 179(1):125-36 PMID:18493045
- Funakoshi Y, et al. (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 21(23):3135-48 PMID:18056425
- Caesar R, et al. (2006) Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Eukaryot Cell 5(2):368-78 PMID:16467477
- Hilgers V, et al. (2006) Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12(10):1835-45 PMID:16940550
- Dephoure N, et al. (2005) Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci U S A 102(50):17940-5 PMID:16330754
- de Lichtenberg U, et al. (2005) New weakly expressed cell cycle-regulated genes in yeast. Yeast 22(15):1191-201 PMID:16278933
- Mangus DA, et al. (2004) Identification of factors regulating poly(A) tail synthesis and maturation. Mol Cell Biol 24(10):4196-206 PMID:15121841
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Chekanova JA, et al. (2001) Analysis of an essential requirement for the poly(A) binding protein function using cross-species complementation. Curr Biol 11(15):1207-14 PMID:11516954
- Tucker M, et al. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104(3):377-86 PMID:11239395
Reviews
No reviews curated.
Download References (.nbib)
- Currie SL and Rosen MK (2022) Using quantitative reconstitution to investigate multicomponent condensates. RNA 28(1):27-35 PMID:34772789
- Liu J, et al. (2022) Molecular Insights into mRNA Polyadenylation and Deadenylation. Int J Mol Sci 23(19) PMID:36232288
- Brambilla M, et al. (2019) The Saccharomyces cerevisiae poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 36(1):23-34 PMID:30006991
- Delorme-Axford E and Klionsky DJ (2019) On the edge of degradation: Autophagy regulation by RNA decay. Wiley Interdiscip Rev RNA 10(3):e1522 PMID:30560575
- Vindry C, et al. (2019) Pat1 RNA-binding proteins: Multitasking shuttling proteins. Wiley Interdiscip Rev RNA 10(6):e1557 PMID:31231973
- Timmers HTM and Tora L (2018) Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 72(1):10-17 PMID:30290147
- Tudek A, et al. (2018) The multitasking polyA tail: nuclear RNA maturation, degradation and export. Philos Trans R Soc Lond B Biol Sci 373(1762) PMID:30397105
- Braun KA and Young ET (2014) Coupling mRNA synthesis and decay. Mol Cell Biol 34(22):4078-87 PMID:25154419
- Martin S and Coller J (2014) PAN-orama: three convergent views of a eukaryotic deadenylase. Nat Struct Mol Biol 21(7):577-8 PMID:24992224
- Das S and Das B (2013) mRNA quality control pathways in Saccharomyces cerevisiae. J Biosci 38(3):615-40 PMID:23938393
- Inada T (2013) Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim Biophys Acta 1829(6-7):634-42 PMID:23416749
- Wahle E and Winkler GS (2013) RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829(6-7):561-70 PMID:23337855
- Balagopal V, et al. (2012) Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta 1819(6):593-603 PMID:22266130
- Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191(3):671-702 PMID:22785621
- Soucek S, et al. (2012) The long and the short of it: the role of the zinc finger polyadenosine RNA binding protein, Nab2, in control of poly(A) tail length. Biochim Biophys Acta 1819(6):546-54 PMID:22484098
- Norbury CJ (2010) 3' Uridylation and the regulation of RNA function in the cytoplasm. Biochem Soc Trans 38(4):1150-3 PMID:20659020
- Wiederhold K and Passmore LA (2010) Cytoplasmic deadenylation: regulation of mRNA fate. Biochem Soc Trans 38(6):1531-6 PMID:21118121
- Mühlemann O, et al. (2008) Recognition and elimination of nonsense mRNA. Biochim Biophys Acta 1779(9):538-49 PMID:18657639
- Saguez C, et al. (2005) Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol 17(3):287-93 PMID:15901499
- Decker CJ and Parker R (2002) mRNA decay enzymes: decappers conserved between yeast and mammals. Proc Natl Acad Sci U S A 99(20):12512-4 PMID:12271148
- Mitchell P and Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320-5 PMID:11343902
- Caponigro G and Parker R (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60(1):233-49 PMID:8852902
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Wang Y, et al. (2018) The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 10(12):1755-1776 PMID:30358795
- Wolf J, et al. (2014) Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J 33(14):1514-26 PMID:24872509
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Hammet A, et al. (2002) Posttranscriptional regulation of the RAD5 DNA repair gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of replication blocks. J Biol Chem 277(25):22469-74 PMID:11953437
- Brown CE, et al. (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5744-53 PMID:8816488
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Estruch F, et al. (2009) A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 281(1):125-34 PMID:19034519
- Lew JE, et al. (1998) Telomere length regulation and telomeric chromatin require the nonsense-mediated mRNA decay pathway. Mol Cell Biol 18(10):6121-30 PMID:9742129
- Brown CE, et al. (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5744-53 PMID:8816488
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Waltho A, et al. (2024) K48- and K63-linked ubiquitin chain interactome reveals branch- and length-specific ubiquitin interactors. Life Sci Alliance 7(8) PMID:38803224
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Decourty L, et al. (2021) Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Res 49(15):8535-8555 PMID:34358317
- Fujii S, et al. (2021) Pan2-Pan3 complex, together with Ccr4-Not complex, has a role in the cell growth on non-fermentable carbon sources. Biochem Biophys Res Commun 570:125-130 PMID:34280615
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Schoppe J, et al. (2020) AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 39(20):e105117 PMID:32840906
- Schäfer IB, et al. (2019) Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase. Cell 177(6):1619-1631.e21 PMID:31104843
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Shin JJ, et al. (2016) Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets. Dis Model Mech 9(9):1039-49 PMID:27519690
- Srivas R, et al. (2016) A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 63(3):514-25 PMID:27453043
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Atencio D, et al. (2014) The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. G3 (Bethesda) 4(3):523-37 PMID:24470217
- Schäfer IB, et al. (2014) The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat Struct Mol Biol 21(7):591-8 PMID:24880344
- Aristizabal MJ, et al. (2013) High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 9(8):e1003758 PMID:24009531
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Franzosa EA, et al. (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211 PMID:22140548
- Zimmermann C, et al. (2011) A chemical-genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6-Bre1 to cell cycle progression. Proc Natl Acad Sci U S A 108(46):18748-53 PMID:22042866
- Brooks MA, et al. (2010) Systematic bioinformatics and experimental validation of yeast complexes reduces the rate of attrition during structural investigations. Structure 18(9):1075-82 PMID:20826334
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Vizeacoumar FJ, et al. (2010) Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188(1):69-81 PMID:20065090
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134 PMID:19547744
- Estruch F, et al. (2009) A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 281(1):125-34 PMID:19034519
- Dixon SJ, et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A 105(43):16653-8 PMID:18931302
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Wilmes GM, et al. (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32(5):735-46 PMID:19061648
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
- Dephoure N, et al. (2005) Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci U S A 102(50):17940-5 PMID:16330754
- Ye P, et al. (2005) Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 1:2005.0026 PMID:16729061
- Mangus DA, et al. (2004) Positive and negative regulation of poly(A) nuclease. Mol Cell Biol 24(12):5521-33 PMID:15169912
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Hammet A, et al. (2002) Posttranscriptional regulation of the RAD5 DNA repair gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of replication blocks. J Biol Chem 277(25):22469-74 PMID:11953437
- Rubbi L, et al. (1999) Functional characterization of ABC10alpha, an essential polypeptide shared by all three forms of eukaryotic DNA-dependent RNA polymerases. J Biol Chem 274(44):31485-92 PMID:10531351
- Brown CE, et al. (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5744-53 PMID:8816488
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Deutschbauer AM, et al. (2002) Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99(24):15530-5 PMID:12432101
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Lussier M, et al. (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147(2):435-50 PMID:9335584