Literature Help
HXT12 / YIL170W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Ray SS, et al. (2009) Combining multisource information through functional-annotation-based weighting: gene function prediction in yeast. IEEE Trans Biomed Eng 56(2):229-36 PMID:19272921
- Sato M, et al. (2002) Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast. J Biosci Bioeng 93(4):395-8 PMID:16233220
- Wieczorke R, et al. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464(3):123-8 PMID:10618490
- Nourani A, et al. (1997) Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17(9):5453-60 PMID:9271421
- Andre B (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11(16):1575-611 PMID:8720066
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Wijsman M, et al. (2019) A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 19(1) PMID:30285096
- Gonçalves C, et al. (2016) Stepwise Functional Evolution in a Fungal Sugar Transporter Family. Mol Biol Evol 33(2):352-66 PMID:26474848
- Shidhi PR, et al. (2015) Making novel proteins from pseudogenes. Bioinformatics 31(1):33-9 PMID:25236460
- Wang C, et al. (2015) Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng 30:79-88 PMID:25944766
- Madeo M, et al. (2014) The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae. J Biol Chem 289(48):33066-71 PMID:25326386
- Lalonde S and Frommer WB (2012) SUT Sucrose and MST Monosaccharide Transporter Inventory of the Selaginella Genome. Front Plant Sci 3:24 PMID:22645575
- Suzuki T and Iwahashi Y (2012) Comprehensive gene expression analysis of type B trichothecenes. J Agric Food Chem 60(37):9519-27 PMID:22897823
- Akao T, et al. (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423-34 PMID:21900213
- Lin Z and Li WH (2011) Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol Biol Evol 28(1):131-42 PMID:20660490
- Dietvorst J, et al. (2010) Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Yeast 27(3):131-8 PMID:20014043
- Kasahara T, et al. (2009) Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. Biochim Biophys Acta 1788(5):1051-5 PMID:19366592
- Carreto L, et al. (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9:524 PMID:18983662
- Iwahashi Y, et al. (2008) Analysis of mechanisms of T-2 toxin toxicity using yeast DNA microarrays. Int J Mol Sci 9(12):2585-2600 PMID:19330094
- Klockow C, et al. (2008) In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae. J Biotechnol 135(2):161-7 PMID:18455824
- Palma M, et al. (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12(3-4):241-8 PMID:17587872
- De Hertogh B, et al. (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172(2):771-81 PMID:16118182
- Alves-Araújo C, et al. (2005) Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii. Yeast 22(3):165-75 PMID:15704215
- Dunn B, et al. (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6:53 PMID:15833139
- Jansen MLA, et al. (2005) Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology (Reading) 151(Pt 5):1657-1669 PMID:15870473
- Jones DL, et al. (2004) Genome-wide analysis of the effects of heat shock on a Saccharomyces cerevisiae mutant with a constitutively activated cAMP-dependent pathway. Comp Funct Genomics 5(5):419-31 PMID:18629174
- Diezemann A and Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43(4):281-8 PMID:12677461
- Talla E, et al. (2003) A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization. BMC Genomics 4(1):38 PMID:14499002
- Fan J, et al. (2002) Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 55(3):336-46 PMID:12187386
- Jansen ML, et al. (2002) Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 68(9):4259-65 PMID:12200274
- Devaux F, et al. (2001) An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor. EMBO Rep 2(6):493-8 PMID:11415981
- Friedman R and Hughes AL (2001) Gene duplication and the structure of eukaryotic genomes. Genome Res 11(3):373-81 PMID:11230161
- Diderich JA, et al. (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274(22):15350-9 PMID:10336421
Reviews
No reviews curated.
Download References (.nbib)
- Attfield PV (2023) Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 43(6):920-937 PMID:35731243
- Donzella L, et al. (2023) Evolution and functional diversification of yeast sugar transporters. Essays Biochem 67(5):811-827 PMID:36928992
- Bolognesi B and Lehner B (2018) Reaching the limit. Elife 7 PMID:30095407
- Bisson LF, et al. (2016) Sugar and Glycerol Transport in Saccharomyces cerevisiae. Adv Exp Med Biol 892:125-168 PMID:26721273
- Moysés DN, et al. (2016) Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 17(3):207 PMID:26927067
- Schirawski J (2015) Invasion is sweet. New Phytol 206(3):892-894 PMID:25865166
- Busti S, et al. (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 10(6):6195-240 PMID:22219709
- Barnett JA (2008) A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 25(10):689-731 PMID:18951365
- Johnston M and Kim JH (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33(Pt 1):247-52 PMID:15667318
- Schuller D and Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68(3):292-304 PMID:15856224
- Ozcan S and Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63(3):554-69 PMID:10477308
- Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166(5):283-92 PMID:8929273
- Nelissen B, et al. (1995) Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett 377(2):232-6 PMID:8543057
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Gallina I, et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533 PMID:25817432
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Miller JP, et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102(34):12123-8 PMID:16093310
- Zhao R, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715-27 PMID:15766533
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Songdech P, et al. (2024) Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 24 PMID:38331422
- Ivashov V, et al. (2020) Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids. Elife 9 PMID:32744498
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Gaytán BD, et al. (2013) Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 132(2):347-58 PMID:23358190
- Gaytán BD, et al. (2013) A genome-wide screen identifies yeast genes required for tolerance to technical toxaphene, an organochlorinated pesticide mixture. PLoS One 8(11):e81253 PMID:24260565
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Blackman RK, et al. (2012) Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 7(1):e29798 PMID:22253786
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Shi Y, et al. (2011) Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 22(21):4093-107 PMID:21880895
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549