Literature Help
IKI1 / YHR187W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 107
- Aliases
-
TOT5
8
,
ELP5
10
11
,
HAP2
16
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Jaciuk M, et al. (2023) Cryo-EM structure of the fully assembled Elongator complex. Nucleic Acids Res 51(5):2011-2032 PMID:36617428
- Yifrach E, et al. (2022) Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 18(9):e11186 PMID:36164978
- Dauden MI, et al. (2017) Architecture of the yeast Elongator complex. EMBO Rep 18(2):264-279 PMID:27974378
- Setiaputra DT, et al. (2017) Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement. EMBO Rep 18(2):280-291 PMID:27872205
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Abdel-Fattah W, et al. (2015) Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet 11(1):e1004931 PMID:25569479
- Glatt S, et al. (2012) The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol 19(3):314-20 PMID:22343726
- Lin Z, et al. (2012) Crystal structure of elongator subcomplex Elp4-6. J Biol Chem 287(25):21501-8 PMID:22556426
- Chen C, et al. (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7(9):e1002258 PMID:21912530
- Greenwood C, et al. (2009) An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator. J Biol Chem 284(1):141-149 PMID:18986986
- Li Q, et al. (2009) The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 5(10):e1000684 PMID:19834596
- Zabel R, et al. (2008) Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 69(1):175-87 PMID:18466297
- Esberg A, et al. (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24(1):139-48 PMID:17018299
- Huang B, et al. (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11(4):424-36 PMID:15769872
- Petrakis TG, et al. (2004) Molecular architecture, structure-function relationship, and importance of the Elp3 subunit for the RNA binding of holo-elongator. J Biol Chem 279(31):32087-92 PMID:15138274
- Zhou W, et al. (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279(31):32262-8 PMID:15166219
- Frohloff F, et al. (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (gamma-toxin target (TOT)) complex. J Biol Chem 278(2):956-61 PMID:12424236
- Fichtner L, et al. (2002) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45(3):817-26 PMID:12139626
- Fichtner L, et al. (2002) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43(3):783-91 PMID:11929532
- Ponting CP (2002) Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res 30(17):3643-52 PMID:12202748
- Winkler GS, et al. (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A 99(6):3517-22 PMID:11904415
- Frohloff F, et al. (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20(8):1993-2003 PMID:11296232
- Krogan NJ and Greenblatt JF (2001) Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21(23):8203-12 PMID:11689709
- Winkler GS, et al. (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276(35):32743-9 PMID:11435442
- Yajima H, et al. (1997) Characterization of IKI1 and IKI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Biosci Biotechnol Biochem 61(4):704-9 PMID:9145530
- Kishida M, et al. (1996) Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Biosci Biotechnol Biochem 60(5):798-801 PMID:8704309
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Jun SE, et al. (2024) Evolutionary Conservation in Protein-Protein Interactions and Structures of the Elongator Sub-Complex ELP456 from Arabidopsis and Yeast. Int J Mol Sci 25(8) PMID:38673955
- Glatigny A, et al. (2017) Development of an in silico method for the identification of subcomplexes involved in the biogenesis of multiprotein complexes in Saccharomyces cerevisiae. BMC Syst Biol 11(1):67 PMID:28693620
- Xu H, et al. (2015) Yeast Elongator protein Elp1p does not undergo proteolytic processing in exponentially growing cells. Microbiologyopen 4(6):867-78 PMID:26407534
- Di Santo R, et al. (2014) A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the Saccharomyces cerevisiae Elongator complex. Mol Microbiol 92(6):1227-42 PMID:24750273
- Bauer F and Hermand D (2012) A coordinated codon-dependent regulation of translation by Elongator. Cell Cycle 11(24):4524-9 PMID:23165209
- On T, et al. (2010) The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78(9):2075-89 PMID:20455264
- Mehlgarten C, et al. (2009) Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 73(5):869-81 PMID:19656297
- Selth LA, et al. (2009) An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics. Mol Cell Biol 29(15):4220-34 PMID:19470761
- Bär C, et al. (2008) A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 69(5):1221-33 PMID:18627462
- Saguez C, et al. (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 31(1):91-103 PMID:18614048
- Titz B, et al. (2006) Transcriptional activators in yeast. Nucleic Acids Res 34(3):955-67 PMID:16464826
- Guo Z and Stiller JW (2005) Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Mol Biol Evol 22(11):2166-78 PMID:16014868
- Schwabish MA and Struhl K (2004) Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 24(23):10111-7 PMID:15542822
- Fichtner L and Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44(3):865-75 PMID:11994165
- Krogan NJ, et al. (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22(20):6979-92 PMID:12242279
- Sebastiaan Winkler G, et al. (2002) Isolation and mass spectrometry of transcription factor complexes. Methods 26(3):260-9 PMID:12054882
Reviews
No reviews curated.
Download References (.nbib)
- Phizicky EM and Hopper AK (2023) The life and times of a tRNA. RNA 29(7):898-957 PMID:37055150
- Li W, et al. (2022) Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. J Agric Food Chem 70(30):9246-9261 PMID:35854404
- Hermand D (2020) Anticodon Wobble Uridine Modification by Elongator at the Crossroad of Cell Signaling, Differentiation, and Diseases. Epigenomes 4(2) PMID:34968241
- Dalwadi U and Yip CK (2018) Structural insights into the function of Elongator. Cell Mol Life Sci 75(9):1613-1622 PMID:29332244
- Johansson MJO, et al. (2018) Elongator-a tRNA modifying complex that promotes efficient translational decoding. Biochim Biophys Acta Gene Regul Mech 1861(4):401-408 PMID:29170010
- Sokołowski M, et al. (2018) Cooperativity between different tRNA modifications and their modification pathways. Biochim Biophys Acta Gene Regul Mech 1861(4):409-418 PMID:29222069
- Kolaj-Robin O and Séraphin B (2017) Structures and Activities of the Elongator Complex and Its Cofactors. Enzymes 41:117-149 PMID:28601220
- Woloszynska M, et al. (2016) Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. Biochim Biophys Acta 1859(8):1025-33 PMID:27354117
- Ding Y and Mou Z (2015) Elongator and its epigenetic role in plant development and responses to abiotic and biotic stresses. Front Plant Sci 6:296 PMID:25972888
- Glatt S and Müller CW (2013) Structural insights into Elongator function. Curr Opin Struct Biol 23(2):235-42 PMID:23510783
- El Yacoubi B, et al. (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46:69-95 PMID:22905870
- Schneider DA (2012) RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493(2):176-84 PMID:21893173
- Versées W, et al. (2010) Elongator, a conserved multitasking complex? Mol Microbiol 76(5):1065-9 PMID:20398217
- Gardiner J, et al. (2007) Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9):1145-9 PMID:17605759
- Jablonowski D and Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35(Pt 6):1533-7 PMID:18031261
- Svejstrup JQ (2007) Elongator complex: how many roles does it play? Curr Opin Cell Biol 19(3):331-6 PMID:17466506
- Gnatt A (2002) Elongation by RNA polymerase II: structure-function relationship. Biochim Biophys Acta 1577(2):175-90 PMID:12213651
- Hartzog GA, et al. (2002) Transcript elongation on a nucleoprotein template. Biochim Biophys Acta 1577(2):276-86 PMID:12213658
- Prelich G (2002) RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell 1(2):153-62 PMID:12455950
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yifrach E, et al. (2022) Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 18(9):e11186 PMID:36164978
- Glatt S, et al. (2012) The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol 19(3):314-20 PMID:22343726
- Huang B, et al. (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11(4):424-36 PMID:15769872
- Fichtner L, et al. (2002) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45(3):817-26 PMID:12139626
- Krogan NJ and Greenblatt JF (2001) Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21(23):8203-12 PMID:11689709
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Filali-Mouncef Y, et al. (2024) An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 20(10):2323-2337 PMID:38958087
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Böckler S, et al. (2017) Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol 216(8):2481-2498 PMID:28615194
- Dauden MI, et al. (2017) Architecture of the yeast Elongator complex. EMBO Rep 18(2):264-279 PMID:27974378
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Setiaputra DT, et al. (2017) Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement. EMBO Rep 18(2):280-291 PMID:27872205
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Abdel-Fattah W, et al. (2015) Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet 11(1):e1004931 PMID:25569479
- Kırlı K, et al. (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife 4 PMID:26673895
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Xu H, et al. (2015) Yeast Elongator protein Elp1p does not undergo proteolytic processing in exponentially growing cells. Microbiologyopen 4(6):867-78 PMID:26407534
- Xu H, et al. (2015) Dimerization of elongator protein 1 is essential for Elongator complex assembly. Proc Natl Acad Sci U S A 112(34):10697-702 PMID:26261306
- Di Santo R, et al. (2014) A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the Saccharomyces cerevisiae Elongator complex. Mol Microbiol 92(6):1227-42 PMID:24750273
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Glatt S, et al. (2012) The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol 19(3):314-20 PMID:22343726
- Lin Z, et al. (2012) Crystal structure of elongator subcomplex Elp4-6. J Biol Chem 287(25):21501-8 PMID:22556426
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Chen C, et al. (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7(9):e1002258 PMID:21912530
- Lee KK, et al. (2011) Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 7:503 PMID:21734642
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134 PMID:19547744
- Greenwood C, et al. (2009) An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator. J Biol Chem 284(1):141-149 PMID:18986986
- Hannum G, et al. (2009) Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet 5(12):e1000782 PMID:20041197
- Mehlgarten C, et al. (2009) Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 73(5):869-81 PMID:19656297
- Bär C, et al. (2008) A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 69(5):1221-33 PMID:18627462
- Saguez C, et al. (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 31(1):91-103 PMID:18614048
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Wilmes GM, et al. (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32(5):735-46 PMID:19061648
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Zabel R, et al. (2008) Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 69(1):175-87 PMID:18466297
- Collins SR, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806-10 PMID:17314980
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Petrakis TG, et al. (2004) Molecular architecture, structure-function relationship, and importance of the Elp3 subunit for the RNA binding of holo-elongator. J Biol Chem 279(31):32087-92 PMID:15138274
- Fichtner L, et al. (2003) Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49(5):1297-307 PMID:12940988
- Frohloff F, et al. (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (gamma-toxin target (TOT)) complex. J Biol Chem 278(2):956-61 PMID:12424236
- Fichtner L, et al. (2002) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43(3):783-91 PMID:11929532
- Fichtner L, et al. (2002) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45(3):817-26 PMID:12139626
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Sanders SL, et al. (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723-38 PMID:12052880
- Winkler GS, et al. (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A 99(6):3517-22 PMID:11904415
- Frohloff F, et al. (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20(8):1993-2003 PMID:11296232
- Krogan NJ and Greenblatt JF (2001) Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21(23):8203-12 PMID:11689709
- Li Y, et al. (2001) A multiprotein complex that interacts with RNA polymerase II elongator. J Biol Chem 276(32):29628-31 PMID:11390369
- Winkler GS, et al. (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276(35):32743-9 PMID:11435442
- Uetz P, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623-7 PMID:10688190
- McNabb DS, et al. (1995) Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9(1):47-58 PMID:7828851
- Hahn S and Guarente L (1988) Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 240(4850):317-21 PMID:2832951
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Nicastro R, et al. (2021) Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast. PLoS Genet 17(3):e1009414 PMID:33690632
- Duffy S, et al. (2016) Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A 113(36):9967-76 PMID:27551064
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Costa C, et al. (2015) New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae. PLoS One 10(8):e0135110 PMID:26267134
- Schlecht U, et al. (2014) A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system. BMC Genomics 15:263 PMID:24708151
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730