Literature Help
KEL1 / YHR158C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Simke WC, et al. (2022) Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Sci Alliance 5(10) PMID:35985794
- Garcia I, et al. (2021) Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 37(13):110186 PMID:34965431
- Kocakaplan D, et al. (2021) Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. Elife 10 PMID:34633288
- Vignogna RC, et al. (2021) Exploring a Local Genetic Interaction Network Using Evolutionary Replay Experiments. Mol Biol Evol 38(8):3144-3152 PMID:33749796
- Buskirk SW, et al. (2017) Hitchhiking and epistasis give rise to cohort dynamics in adapting populations. Proc Natl Acad Sci U S A 114(31):8330-8335 PMID:28720700
- Smith JA and Rose MD (2016) Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism. Genetics 202(4):1421-35 PMID:26865368
- Gould CJ, et al. (2014) Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 289(26):18290-301 PMID:24828508
- Kim HJ, et al. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152-60 PMID:24336168
- Lam C, et al. (2014) A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell 13(3):383-91 PMID:24390141
- Dodgson J, et al. (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 4:1834 PMID:23673619
- Gagnon-Arsenault I, et al. (2013) Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. J Proteomics 81:112-25 PMID:23063722
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Bertazzi DT, et al. (2011) The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J Cell Biol 193(6):1033-48 PMID:21670215
- Geymonat M, et al. (2009) Lte1 contributes to Bfa1 localization rather than stimulating nucleotide exchange by Tem1. J Cell Biol 187(4):497-511 PMID:19948498
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Knaus M, et al. (2005) The Bud14p-Glc7p complex functions as a cortical regulator of dynein in budding yeast. EMBO J 24(17):3000-11 PMID:16107882
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Höfken T and Schiebel E (2002) A role for cell polarity proteins in mitotic exit. EMBO J 21(18):4851-62 PMID:12234925
- Kumar A, et al. (2002) Subcellular localization of the yeast proteome. Genes Dev 16(6):707-19 PMID:11914276
- Seshan A, et al. (2002) Control of Lte1 localization by cell polarity determinants and Cdc14. Curr Biol 12(24):2098-110 PMID:12498684
- Pardo M, et al. (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21(16):3396-410 PMID:11079560
- Currie JR and Brown WT (1999) KH domain-containing proteins of yeast: absence of a fragile X gene homologue. Am J Med Genet 84(3):272-6 PMID:10331606
- Heinisch JJ, et al. (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32(4):671-80 PMID:10361272
- Philips J and Herskowitz I (1998) Identification of Kel1p, a kelch domain-containing protein involved in cell fusion and morphology in Saccharomyces cerevisiae. J Cell Biol 143(2):375-89 PMID:9786949
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Girgin SM and Çaydaşi AK (2024) Bud14 function is crucial for spindle pole body size maintenance. Turk J Biol 48(4):267-278 PMID:39296336
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Mo N, et al. (2021) Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance. Mol Biol Evol 38(5):1874-1887 PMID:33355660
- Moreno D, et al. (2013) A fluorescent reporter for mapping cellular protein-protein interactions in time and space. Mol Syst Biol 9:647 PMID:23511205
- Bloom J, et al. (2011) Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 286(7):5434-45 PMID:21127052
- Gao JT, et al. (2011) Modular coherence of protein dynamics in yeast cell polarity system. Proc Natl Acad Sci U S A 108(18):7647-52 PMID:21502521
- Geymonat M, et al. (2010) Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae. J Cell Biol 191(6):1097-112 PMID:21149565
- Côte P, et al. (2009) Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 20(14):3363-73 PMID:19477921
- Narayanaswamy R, et al. (2009) Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 8(1):6-19 PMID:19053807
- Zou J, et al. (2009) Regulation of cell polarity through phosphorylation of Bni4 by Pho85 G1 cyclin-dependent kinases in Saccharomyces cerevisiae. Mol Biol Cell 20(14):3239-50 PMID:19458192
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Chang EJ, et al. (2007) Prediction of cyclin-dependent kinase phosphorylation substrates. PLoS One 2(7):e656 PMID:17668044
- Nelson SA and Cooper JA (2007) A novel pathway that coordinates mitotic exit with spindle position. Mol Biol Cell 18(9):3440-50 PMID:17615297
- Archambault V, et al. (2004) Targeted proteomic study of the cyclin-Cdk module. Mol Cell 14(6):699-711 PMID:15200949
- Begley TJ, et al. (2004) Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol Cell 16(1):117-25 PMID:15469827
- Brinkworth RI, et al. (2003) Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 100(1):74-9 PMID:12502784
- Burchett SA, et al. (2002) Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J Biol Chem 277(25):22156-67 PMID:11940600
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Garcia I, et al. (2021) Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 37(13):110186 PMID:34965431
- Gould CJ, et al. (2014) Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 289(26):18290-301 PMID:24828508
- Lam C, et al. (2014) A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell 13(3):383-91 PMID:24390141
- Dodgson J, et al. (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 4:1834 PMID:23673619
- Narayanaswamy R, et al. (2009) Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 8(1):6-19 PMID:19053807
- Höfken T and Schiebel E (2002) A role for cell polarity proteins in mitotic exit. EMBO J 21(18):4851-62 PMID:12234925
- Kumar A, et al. (2002) Subcellular localization of the yeast proteome. Genes Dev 16(6):707-19 PMID:11914276
- Philips J and Herskowitz I (1998) Identification of Kel1p, a kelch domain-containing protein involved in cell fusion and morphology in Saccharomyces cerevisiae. J Cell Biol 143(2):375-89 PMID:9786949
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Garcia I, et al. (2021) Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 37(13):110186 PMID:34965431
- Gould CJ, et al. (2014) Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 289(26):18290-301 PMID:24828508
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Nitika, et al. (2022) Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 20(10):e3001839 PMID:36269765
- Simke WC, et al. (2022) Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Sci Alliance 5(10) PMID:35985794
- Decourty L, et al. (2021) Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Res 49(15):8535-8555 PMID:34358317
- Garcia I, et al. (2021) Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 37(13):110186 PMID:34965431
- Kocakaplan D, et al. (2021) Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. Elife 10 PMID:34633288
- Grinhagens S, et al. (2020) A time-resolved interaction analysis of Bem1 reconstructs the flow of Cdc42 during polar growth. Life Sci Alliance 3(9) PMID:32737079
- Ming Sun S, et al. (2020) A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in S. cerevisiae. J Cell Sci 133(10) PMID:32299836
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Harlen KM and Churchman LS (2017) Subgenic Pol II interactomes identify region-specific transcription elongation regulators. Mol Syst Biol 13(1):900 PMID:28043953
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Smith JA and Rose MD (2016) Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism. Genetics 202(4):1421-35 PMID:26865368
- Kershaw CJ, et al. (2015) Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Sci Rep 5:15518 PMID:26493364
- Michel S, et al. (2015) A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance. BMC Genet 16:13 PMID:25887987
- Neller J, et al. (2015) A protein complex containing Epo1p anchors the cortical endoplasmic reticulum to the yeast bud tip. J Cell Biol 208(1):71-87 PMID:25547157
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Atencio D, et al. (2014) The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. G3 (Bethesda) 4(3):523-37 PMID:24470217
- Gould CJ, et al. (2014) Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 289(26):18290-301 PMID:24828508
- Aristizabal MJ, et al. (2013) High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 9(8):e1003758 PMID:24009531
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Niepel M, et al. (2013) The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 24(24):3920-38 PMID:24152732
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Schlecht U, et al. (2012) Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci U S A 109(23):9213-8 PMID:22615397
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Wang Y, et al. (2012) Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23(19):3911-22 PMID:22875988
- Bertazzi DT, et al. (2011) The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J Cell Biol 193(6):1033-48 PMID:21670215
- Bloom J, et al. (2011) Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 286(7):5434-45 PMID:21127052
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Hruby A, et al. (2011) A constraint network of interactions: protein-protein interaction analysis of the yeast type II phosphatase Ptc1p and its adaptor protein Nbp2p. J Cell Sci 124(Pt 1):35-46 PMID:21118957
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Vembar SS, et al. (2010) J domain co-chaperone specificity defines the role of BiP during protein translocation. J Biol Chem 285(29):22484-94 PMID:20430885
- Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
- Addinall SG, et al. (2008) A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180(4):2251-66 PMID:18845848
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Knaus M, et al. (2005) The Bud14p-Glc7p complex functions as a cortical regulator of dynein in budding yeast. EMBO J 24(17):3000-11 PMID:16107882
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Archambault V, et al. (2004) Targeted proteomic study of the cyclin-Cdk module. Mol Cell 14(6):699-711 PMID:15200949
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Burchett SA, et al. (2002) Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J Biol Chem 277(25):22156-67 PMID:11940600
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Höfken T and Schiebel E (2002) A role for cell polarity proteins in mitotic exit. EMBO J 21(18):4851-62 PMID:12234925
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
- Seshan A, et al. (2002) Control of Lte1 localization by cell polarity determinants and Cdc14. Curr Biol 12(24):2098-110 PMID:12498684
- Newman JR, et al. (2000) A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97(24):13203-8 PMID:11087867
- Uetz P, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623-7 PMID:10688190
- Philips J and Herskowitz I (1998) Identification of Kel1p, a kelch domain-containing protein involved in cell fusion and morphology in Saccharomyces cerevisiae. J Cell Biol 143(2):375-89 PMID:9786949
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Chen YC, et al. (2018) Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7 PMID:30516470
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
- Plank M, et al. (2021) Phosphoproteomic Effects of Acute Depletion of PP2A Regulatory Subunit Cdc55. Proteomics 21(1):e2000166 PMID:32970932
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- Kim HJ, et al. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152-60 PMID:24336168
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Watanabe M, et al. (2009) Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Curr Genet 55(4):365-80 PMID:19466415
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Jin R, et al. (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284-96 PMID:17989363
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Begley TJ, et al. (2004) Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol Cell 16(1):117-25 PMID:15469827
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Jorgensen P, et al. (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395-400 PMID:12089449