Literature Help
PTC7 / YHR076W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Kolitsida P, et al. (2023) The pyruvate dehydrogenase complex regulates mitophagic trafficking and protein phosphorylation. Life Sci Alliance 6(9) PMID:37442609
- Hurtig JE, et al. (2020) Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts. RNA 26(10):1464-1480 PMID:32631843
- Awad AM, et al. (2017) Chromatin-remodeling SWI/SNF complex regulates coenzyme Q6 synthesis and a metabolic shift to respiration in yeast. J Biol Chem 292(36):14851-14866 PMID:28739803
- González-Mariscal I, et al. (2017) Balanced CoQ6 biosynthesis is required for lifespan and mitophagy in yeast. Microb Cell 4(2):38-51 PMID:28357388
- Guo X, et al. (2017) Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance Metabolic Function. Cell Rep 18(2):307-313 PMID:28076776
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Bonde MM, et al. (2014) Quantification of pre-mRNA escape rate and synergy in splicing. Nucleic Acids Res 42(20):12847-60 PMID:25352554
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Marshall AN, et al. (2013) Alternative splicing and subfunctionalization generates functional diversity in fungal proteomes. PLoS Genet 9(3):e1003376 PMID:23516382
- Martín-Montalvo A, et al. (2013) The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 288(39):28126-37 PMID:23940037
- Juneau K, et al. (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183(1):185-94 PMID:19564484
- Gey U, et al. (2008) Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J Biol Chem 283(15):9759-67 PMID:18180296
- Runner VM and Brewster JL (2003) A genetic screen for yeast genes induced by sustained osmotic stress. Yeast 20(10):913-20 PMID:12868060
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Jiang L, et al. (2002) The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast. FEBS Lett 527(1-3):323-5 PMID:12220683
- Ramos CW, et al. (2000) Molecular analysis of the Saccharomyces cerevisiae YHR076w gene. IUBMB Life 50(6):371-7 PMID:11327310
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Qin N, et al. (2024) Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 15(1):1591 PMID:38383540
- Anjago WM, et al. (2022) The Calcium Chloride Responsive Type 2C Protein Phosphatases Play Synergistic Roles in Regulating MAPK Pathways in Magnaporthe oryzae. J Fungi (Basel) 8(12) PMID:36547620
- Hooks KB, et al. (2014) Intron evolution in Saccharomycetaceae. Genome Biol Evol 6(9):2543-56 PMID:25364803
- Sharmin D, et al. (2014) Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10):393-409 PMID:25088474
- Maeda K, et al. (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501(7466):257-61 PMID:23934110
- Plass M, et al. (2012) RNA secondary structure mediates alternative 3'ss selection in Saccharomyces cerevisiae. RNA 18(6):1103-15 PMID:22539526
- Bozaquel-Morais BL, et al. (2010) A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5(10):e13692 PMID:21060891
- Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
- González A, et al. (2009) Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1. Mol Cell Biol 29(10):2876-88 PMID:19273591
- Szklarczyk R and Huynen MA (2009) Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 10(11):R135 PMID:19930686
- Juneau K, et al. (2007) High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc Natl Acad Sci U S A 104(5):1522-7 PMID:17244705
- Ruan H, et al. (2007) The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae. FEMS Yeast Res 7(2):209-15 PMID:17002782
- Zhang Z, et al. (2007) Genome-wide identification of spliced introns using a tiling microarray. Genome Res 17(4):503-9 PMID:17351133
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Stephens C, et al. (2005) Altered fungal sensitivity to a plant antimicrobial peptide through over-expression of yeast cDNAs. Curr Genet 47(3):194-201 PMID:15700139
- Karlberg O, et al. (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17(3):170-87 PMID:11025528
- Platt GM and Price C (1997) Isolation of a Schizosaccharomyces pombe gene which in high copy confers resistance to the nucleoside analogue 5-azacytidine. Yeast 13(5):463-74 PMID:9153756
Reviews
No reviews curated.
Download References (.nbib)
- Pierrel F, et al. (2022) Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J Microbiol Biotechnol 38(4):58 PMID:35178585
- Schuster R and Okamoto K (2022) An overview of the molecular mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 1866(11):130203 PMID:35842014
- Frankovsky J, et al. (2021) Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 57:148-162 PMID:33412333
- Liu Y and Okamoto K (2021) Regulatory mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 1865(5):129858 PMID:33545228
- Kamada R, et al. (2020) Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 215:107622 PMID:32650009
- Ariño J, et al. (2019) Ser/Thr protein phosphatases in fungi: structure, regulation and function. Microb Cell 6(5):217-256 PMID:31114794
- Offley SR and Schmidt MC (2019) Protein phosphatases of Saccharomyces cerevisiae. Curr Genet 65(1):41-55 PMID:30225534
- Awad AM, et al. (2018) Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem 62(3):361-376 PMID:29980630
- Acosta MJ, et al. (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857(8):1079-1085 PMID:27060254
- González-Mariscal I, et al. (2014) Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block. IUBMB Life 66(2):63-70 PMID:24470391
- Kempken F (2013) Alternative splicing in ascomycetes. Appl Microbiol Biotechnol 97(10):4235-41 PMID:23515838
- Ariño J, et al. (2011) Type 2C protein phosphatases in fungi. Eukaryot Cell 10(1):21-33 PMID:21076010
- Rao S, et al. (2011) Signaling at the gate: phosphorylation of the mitochondrial protein import machinery. Cell Cycle 10(13):2083-90 PMID:21606678
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Martín-Montalvo A, et al. (2013) The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 288(39):28126-37 PMID:23940037
- Juneau K, et al. (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183(1):185-94 PMID:19564484
- Gey U, et al. (2008) Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J Biol Chem 283(15):9759-67 PMID:18180296
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Jiang L, et al. (2002) The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast. FEBS Lett 527(1-3):323-5 PMID:12220683
- Ramos CW, et al. (2000) Molecular analysis of the Saccharomyces cerevisiae YHR076w gene. IUBMB Life 50(6):371-7 PMID:11327310
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Zhao YY, et al. (2020) Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3 (Bethesda) 10(2):479-488 PMID:31836620
- González-Mariscal I, et al. (2017) Balanced CoQ6 biosynthesis is required for lifespan and mitophagy in yeast. Microb Cell 4(2):38-51 PMID:28357388
- Guo X, et al. (2017) Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance Metabolic Function. Cell Rep 18(2):307-313 PMID:28076776
- Juneau K, et al. (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183(1):185-94 PMID:19564484
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Filali-Mouncef Y, et al. (2024) An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 20(10):2323-2337 PMID:38958087
- Mukherjee A, et al. (2024) Distinct roles of spindle checkpoint proteins in meiosis. Curr Biol 34(16):3820-3829.e5 PMID:39079532
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Kolitsida P, et al. (2023) The pyruvate dehydrogenase complex regulates mitophagic trafficking and protein phosphorylation. Life Sci Alliance 6(9) PMID:37442609
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Makepeace KAT, et al. (2020) Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker. Mol Cell Proteomics 19(4):624-639 PMID:32051233
- Sanchez A, et al. (2020) Exo1 recruits Cdc5 polo kinase to MutLγ to ensure efficient meiotic crossover formation. Proc Natl Acad Sci U S A 117(48):30577-30588 PMID:33199619
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Yadav S, et al. (2020) A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP+ in the Yeast Saccharomyces cerevisiae. G3 (Bethesda) 10(1):371-378 PMID:31757928
- Pereira F, et al. (2019) Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 14(1):e0211180 PMID:30682149
- Guo X, et al. (2017) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292(28):11751-11759 PMID:28539364
- She R, et al. (2017) Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome. Proc Natl Acad Sci U S A 114(14):3619-3624 PMID:28325876
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Sharmin D, et al. (2014) Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10):393-409 PMID:25088474
- Martín-Montalvo A, et al. (2013) The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 288(39):28126-37 PMID:23940037
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Franzosa EA, et al. (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211 PMID:22140548
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Fiedler D, et al. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136(5):952-63 PMID:19269370
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
- Wigge PA, et al. (1998) Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J Cell Biol 141(4):967-77 PMID:9585415
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Dolan M, et al. (2023) High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (Bethesda) 13(12) PMID:37738679
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Zhao YY, et al. (2020) Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3 (Bethesda) 10(2):479-488 PMID:31836620
- Alfatah M, et al. (2019) Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. Chemosphere 228:219-231 PMID:31029968
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Cuesta-Marbán Á, et al. (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405-8418 PMID:23335509
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Suzuki T, et al. (2013) Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. J Biosci Bioeng 115(5):467-74 PMID:23290995
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Bozaquel-Morais BL, et al. (2010) A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5(10):e13692 PMID:21060891
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Jin R, et al. (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284-96 PMID:17989363
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549