Literature Help
SCC4 / YER147C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Phipps J, et al. (2025) Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks. Nat Cell Biol 27(1):118-129 PMID:39482358
- Psakhye I, et al. (2023) PCNA recruits cohesin loader Scc2 to ensure sister chromatid cohesion. Nat Struct Mol Biol 30(9):1286-1294 PMID:37592094
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Muñoz S, et al. (2022) Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 13(1):7698 PMID:36509793
- Scherzer M, et al. (2022) Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 5(5) PMID:35086935
- Petela NJ, et al. (2021) Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes. Elife 10 PMID:34259632
- Kuhl LM, et al. (2020) A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination. Genetics 216(2):395-408 PMID:32843356
- Gutierrez-Escribano P, et al. (2019) A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci Adv 5(11):eaay6804 PMID:31807710
- Muñoz S, et al. (2019) A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol Cell 74(4):664-673.e5 PMID:30922844
- Minamino M, et al. (2018) Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci Alliance 1(5) PMID:30381802
- Chao WC, et al. (2017) Structure of the cohesin loader Scc2. Nat Commun 8:13952 PMID:28059076
- Hinshaw SM, et al. (2017) The Kinetochore Receptor for the Cohesin Loading Complex. Cell 171(1):72-84.e13 PMID:28938124
- Ocampo-Hafalla M, et al. (2016) Evidence for cohesin sliding along budding yeast chromosomes. Open Biol 6(6) PMID:27278645
- Hinshaw SM, et al. (2015) Structural evidence for Scc4-dependent localization of cohesin loading. Elife 4:e06057 PMID:26038942
- Orgil O, et al. (2015) A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex. PLoS Genet 11(3):e1005036 PMID:25748820
- Lopez-Serra L, et al. (2014) The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 46(10):1147-51 PMID:25173104
- Woodman J, et al. (2014) Cell cycle-specific cleavage of Scc2 regulates its cohesin deposition activity. Proc Natl Acad Sci U S A 111(19):7060-5 PMID:24778232
- Fernius J, et al. (2013) Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr Biol 23(7):599-606 PMID:23499533
- Hu B, et al. (2011) ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol 21(1):12-24 PMID:21185190
- D'Ambrosio C, et al. (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215-27 PMID:18708580
- Lengronne A, et al. (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573-8 PMID:15229615
- Ström L, et al. (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16(6):1003-15 PMID:15610742
- Unal E, et al. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991-1002 PMID:15610741
- Arumugam P, et al. (2003) ATP hydrolysis is required for cohesin's association with chromosomes. Curr Biol 13(22):1941-53 PMID:14614819
- Ciosk R, et al. (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5(2):243-54 PMID:10882066
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID:37486771
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- van Leeuwen J, et al. (2020) Systematic analysis of bypass suppression of essential genes. Mol Syst Biol 16(9):e9828 PMID:32939983
- He Y, et al. (2019) Maize Dek15 Encodes the Cohesin-Loading Complex Subunit SCC4 and Is Essential for Chromosome Segregation and Kernel Development. Plant Cell 31(2):465-485 PMID:30705131
- Matityahu A, et al. (2019) Identifying Functional Domains in Subunits of Structural Maintenance of Chromosomes (SMC) Complexes by Transposon Mutagenesis Screen in Yeast. Methods Mol Biol 2004:63-78 PMID:31147910
- Chereji RV, et al. (2017) Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly. Nucleic Acids Res 45(15):8806-8821 PMID:28575439
- Seifert FU, et al. (2016) Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50. EMBO J 35(7):759-72 PMID:26896444
- Woodman J, et al. (2015) Phosphorylation of the Scc2 cohesin deposition complex subunit regulates chromosome condensation through cohesin integrity. Mol Biol Cell 26(21):3754-67 PMID:26354421
- Magtanong L, et al. (2011) Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 29(6):505-11 PMID:21572441
- Kogut I, et al. (2009) The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev 23(19):2345-57 PMID:19797771
- McNairn AJ and Gerton JL (2009) Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins. Chromosome Res 17(2):155-63 PMID:19308698
- Parnas O, et al. (2009) The ELG1 clamp loader plays a role in sister chromatid cohesion. PLoS One 4(5):e5497 PMID:19430531
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Ocampo-Hafalla MT, et al. (2007) Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116(6):531-44 PMID:17763979
- Bernard P, et al. (2006) A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr Biol 16(9):875-81 PMID:16682348
- Seitan VC, et al. (2006) Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol 4(8):e242 PMID:16802858
- Watrin E, et al. (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16(9):863-74 PMID:16682347
Reviews
No reviews curated.
Download References (.nbib)
- Choudhary K and Kupiec M (2023) The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 47(1) PMID:36370456
- Hou W, et al. (2022) Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 57(3):333-350 PMID:35112600
- Mehta G, et al. (2022) Minichromosome maintenance proteins in eukaryotic chromosome segregation. Bioessays 44(1):e2100218 PMID:34841543
- Arbel M, et al. (2021) PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 12(11) PMID:34828416
- van Schie JJM and de Lange J (2021) The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 10(12) PMID:34943967
- Hong S, et al. (2019) The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 57(4):221-231 PMID:30671743
- Kuhl LM and Vader G (2019) Kinetochores, cohesin, and DNA breaks: Controlling meiotic recombination within pericentromeres. Yeast 36(3):121-127 PMID:30625250
- Lawrimore J and Bloom K (2019) The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 54(4):352-370 PMID:31573359
- Cheung S, et al. (2018) Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 9:14 PMID:29713390
- Litwin I and Wysocki R (2018) New insights into cohesin loading. Curr Genet 64(1):53-61 PMID:28631016
- Kupiec M (2016) Alternative clamp loaders/unloaders. FEMS Yeast Res 16(7) PMID:27664980
- Zakari M, et al. (2015) Etiology and pathogenesis of the cohesinopathies. Wiley Interdiscip Rev Dev Biol 4(5):489-504 PMID:25847322
- Marston AL (2014) Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 196(1):31-63 PMID:24395824
- Tapia-Alveal C, et al. (2014) Functional interplay between cohesin and Smc5/6 complexes. Chromosoma 123(5):437-45 PMID:24981336
- Mehta GD, et al. (2013) Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 587(15):2299-312 PMID:23831059
- Remeseiro S and Losada A (2013) Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25(1):63-71 PMID:23219370
- Remeseiro S, et al. (2013) Cohesin in development and disease. Development 140(18):3715-8 PMID:23981654
- Dorsett D and Ström L (2012) The ancient and evolving roles of cohesin in gene expression and DNA repair. Curr Biol 22(7):R240-50 PMID:22497943
- Mehta GD, et al. (2012) Cohesin: a guardian of genome integrity. Biochim Biophys Acta 1823(8):1324-42 PMID:22677545
- Ocampo-Hafalla MT and Uhlmann F (2011) Cohesin loading and sliding. J Cell Sci 124(Pt 5):685-91 PMID:21321326
- Skibbens RV (2010) Buck the establishment: reinventing sister chromatid cohesion. Trends Cell Biol 20(9):507-13 PMID:20620062
- Lee SE and Myung K (2009) Faithful after break-up: suppression of chromosomal translocations. Cell Mol Life Sci 66(19):3149-60 PMID:19547915
- Ball AR and Yokomori K (2008) Damage-induced reactivation of cohesin in postreplicative DNA repair. Bioessays 30(1):5-9 PMID:18081005
- Losada A (2008) The regulation of sister chromatid cohesion. Biochim Biophys Acta 1786(1):41-8 PMID:18474253
- Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116(1):1-13 PMID:16819604
- Guacci V (2007) Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells 12(6):693-708 PMID:17573771
- Uhlmann F and Hopfner KP (2006) Chromosome biology: the crux of the ring. Curr Biol 16(3):R102-5 PMID:16461262
- Watrin E and Peters JM (2006) Cohesin and DNA damage repair. Exp Cell Res 312(14):2687-93 PMID:16876157
- Meluh PB and Strunnikov AV (2002) Beyond the ABCs of CKC and SCC. Do centromeres orchestrate sister chromatid cohesion or vice versa? Eur J Biochem 269(9):2300-14 PMID:11985612
- Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1(2):165-77 PMID:11702777
- Glazer VM and Glazunov AV (1999) [Molecular-genetic analysis of dual-stranded DNA break repair in saccharomyces yeasts]. Genetika 35(11):1449-69 PMID:10624571
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Boardman K, et al. (2023) A model for Scc2p stimulation of cohesin's ATPase and its inhibition by acetylation of Smc3p. Genes Dev 37(7-8):277-290 PMID:37055084
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID:37486771
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Psakhye I, et al. (2023) PCNA recruits cohesin loader Scc2 to ensure sister chromatid cohesion. Nat Struct Mol Biol 30(9):1286-1294 PMID:37592094
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Muñoz S, et al. (2022) Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 13(1):7698 PMID:36509793
- Petela NJ, et al. (2021) Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes. Elife 10 PMID:34259632
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- van Leeuwen J, et al. (2020) Systematic analysis of bypass suppression of essential genes. Mol Syst Biol 16(9):e9828 PMID:32939983
- Gutierrez-Escribano P, et al. (2019) A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci Adv 5(11):eaay6804 PMID:31807710
- Muñoz S, et al. (2019) A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol Cell 74(4):664-673.e5 PMID:30922844
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Minamino M, et al. (2018) Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci Alliance 1(5) PMID:30381802
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Petela NJ, et al. (2018) Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5. Mol Cell 70(6):1134-1148.e7 PMID:29932904
- Hinshaw SM, et al. (2017) The Kinetochore Receptor for the Cohesin Loading Complex. Cell 171(1):72-84.e13 PMID:28938124
- She R, et al. (2017) Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome. Proc Natl Acad Sci U S A 114(14):3619-3624 PMID:28325876
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Shwartz M, et al. (2016) Identification of Functional Domains in the Cohesin Loader Subunit Scc4 by a Random Insertion/Dominant Negative Screen. G3 (Bethesda) 6(8):2655-63 PMID:27280786
- Hinshaw SM, et al. (2015) Structural evidence for Scc4-dependent localization of cohesin loading. Elife 4:e06057 PMID:26038942
- Woodman J, et al. (2015) Phosphorylation of the Scc2 cohesin deposition complex subunit regulates chromosome condensation through cohesin integrity. Mol Biol Cell 26(21):3754-67 PMID:26354421
- Lopez-Serra L, et al. (2014) The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 46(10):1147-51 PMID:25173104
- Woodman J, et al. (2014) Cell cycle-specific cleavage of Scc2 regulates its cohesin deposition activity. Proc Natl Acad Sci U S A 111(19):7060-5 PMID:24778232
- Fernius J, et al. (2013) Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr Biol 23(7):599-606 PMID:23499533
- Magtanong L, et al. (2011) Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 29(6):505-11 PMID:21572441
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Parnas O, et al. (2009) The ELG1 clamp loader plays a role in sister chromatid cohesion. PLoS One 4(5):e5497 PMID:19430531
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Arumugam P, et al. (2003) ATP hydrolysis is required for cohesin's association with chromosomes. Curr Biol 13(22):1941-53 PMID:14614819
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Ciosk R, et al. (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5(2):243-54 PMID:10882066
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
- Mondeel TDGA, et al. (2019) ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Res 47(15):7825-7841 PMID:31299083
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Carrillo E, et al. (2012) Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Mol Biol Cell 23(10):1928-42 PMID:22438580
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549