Primary Literature
TEXT HERE
- Kong KE, et al. (2021) Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Mol Cell 81(11):2460-2476.e11 PMID: 33974913
- Sherpa D, et al. (2021) GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Mol Cell 81(11):2445-2459.e13 PMID: 33905682
- Qiao S, et al. (2020) Interconversion between Anticipatory and Active GID E3Â Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Mol Cell 77(1):150-163.e9 PMID: 31708416
- Menssen R, et al. (2012) Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes. J Biol Chem 287(30):25602-14 PMID: 22645139
- Braun B, et al. (2011) Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett 585(24):3856-61 PMID: 22044534
- Regelmann J, et al. (2003) Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 14(4):1652-63 PMID: 12686616