Primary Literature
TEXT HERE
- Anderson NS and Barlowe C (2019) Conserved juxtamembrane domains in the yeast golgin Coy1 drive assembly of a megadalton-sized complex and mediate binding to tethering and SNARE proteins. J Biol Chem 294(25):9690-9705 PMID: 31073031
- Jaffe M, et al. (2019) Improved discovery of genetic interactions using CRISPRiSeq across multiple environments. Genome Res 29(4):668-681 PMID: 30782640
- Ishii M, et al. (2018) Detailed Analysis of the Interaction of Yeast COG Complex. Cell Struct Funct 43(2):119-127 PMID: 29899178
- Chou HT, et al. (2016) CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat Struct Mol Biol 23(8):761-3 PMID: 27428774
- Ha JY, et al. (2016) Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23(8):758-60 PMID: 27428773
- Ha JY, et al. (2014) Cog5-Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc Natl Acad Sci U S A 111(44):15762-7 PMID: 25331899
- Arasaki K, et al. (2013) A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex. Mol Biol Cell 24(18):2907-17 PMID: 23885118
- Shemorry A, et al. (2013) Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol Cell 50(4):540-51 PMID: 23603116
- Smith RD and Lupashin VV (2008) Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr Res 343(12):2024-31 PMID: 18353293
- Zeevaert R, et al. (2008) Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab 93(1):15-21 PMID: 17904886
- Cavanaugh LF, et al. (2007) Structural analysis of conserved oligomeric Golgi complex subunit 2. J Biol Chem 282(32):23418-26 PMID: 17565980
- Shestakova A, et al. (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179(6):1179-92 PMID: 18086915
- Sohda M, et al. (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8(3):270-84 PMID: 17274799
- Ungar D, et al. (2006) Retrograde transport on the COG railway. Trends Cell Biol 16(2):113-20 PMID: 16406524
- Fotso P, et al. (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280(30):27613-23 PMID: 15932880
- Bruinsma P, et al. (2004) Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J Biol Chem 279(38):39814-23 PMID: 15229219
- Loh E and Hong W (2004) The binary interacting network of the conserved oligomeric Golgi tethering complex. J Biol Chem 279(23):24640-8 PMID: 15047703
- Conibear E, et al. (2003) Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14(4):1610-23 PMID: 12686613
- Farkas RM, et al. (2003) The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell 14(1):190-200 PMID: 12529436
- Ungar D, et al. (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157(3):405-15 PMID: 11980916