New & Noteworthy

You Can Take Yeast Off of the Grapevine, But…

October 14, 2015


All over the world and through the ages, people have moved from the country into the big city to look for a better life. These folks often find that even though they can adapt to city life and city ways, they still hang on to their core country values. As the old saying goes, “You can take the boy out of the country, but you can’t take the country out of the boy.”

Even when he goes to the city, the country mouse hangs on to his country ways. The same is true for S. cerevisiae—even though it entered the lab, it still clung to genes that were most useful out in the vineyard. Illustration by Arthur Rackham (1912) via Wikimedia Commons

Our friend Saccharomyces cerevisiae didn’t migrate voluntarily into the lab. But it ended up there, and has been as lonely as a new migrant in a big city. 

Which is of course how we need it to be. One of the basic tenets of classical microbiology is that you can’t begin to study an organism until you’ve isolated it in a pure culture.

And studying pure S. cerevisiae has yielded a huge body of knowledge about molecular biology, cell biology, and genetics. But by not studying yeast in the context of its old country home, we may have missed a few things.

In a new article in PLOS ONE, Rossouw and colleagues uncover one of them. S. cerevisiae has a family of FLO genes that promote flocculation, the adherence of yeast cells to each other. It has always been a bit puzzling why a whole family of genes that are pretty much redundant with each other would be maintained through evolution.

When the researchers took S. cerevisiae out of its lab isolation by mixing it with other yeast species, they found that the different flocculation genes actually determine which species it can co-flocculate with. Different Flo proteins prefer different partners. 

This discovery helps us understand the evolution of this gene family and also opens the door to further study of inter-species interactions in the vineyard. And since flocculation is an important property in winemaking and brewing, there could even be tasty practical applications of this knowledge.

The researchers started by surveying 18 non-Saccharomyces yeast strains that are found in vineyards. They looked at the ability of the yeasts to flocculate both as pure strains and when mixed with either of two S. cerevisiae wine strains.

Intriguingly, certain species showed a synergistic effect when mixed with S. cerevisiae, flocculating more than either species on its own. Rossouw and colleagues used microscopy to confirm that the “flocs” did indeed contain both yeast species—a simple observation, since the cells of different species have slightly different shapes.

To test the effects of different FLO genes on co-flocculation, the authors assayed the co-flocculation ability of flo1, flo10, and flo11 deletion mutants as well as Flo1, Flo5, and Flo11 overproducers in individual combinations with six of the non-Saccharomyces yeasts. 

The results showed that Flo1 has general effects on flocculation. Overproduction increased co-flocculation across the board with all the species tested, while deletion of FLO1 consistently decreased it. In contrast, deletion of FLO10 didn’t have much effect on co-flocculation.

It was a different story for Flo5 and Flo11, though. Overproduction of each of these not only affected co-flocculation, but had species-specific or even strain-specific effects. Flo5 overproduction caused a relative increase in co-flocculation with Metchnikowia fructicola and a substantial decrease in co-flocculation with two different strains of Hanseniaspora opuntiae. Flo11 overproduction reduced co-flocculation with one of the Hanseniaspora opuntiae strains but not with the other. 

All of these experiments were done on mixtures of two species at a time. To get S. cerevisiae even further out of the lab, Rossouw and colleagues created a “consortium” of wine yeasts, a mixture of six species that are found in wine must (freshly pressed grapes) at the start of fermentation. They then added the FLO overproducer strains individually to the consortium, to see their effects in a more natural situation.

They let the yeast consortium flocculate, extracted total DNA from the flocculated or supernatant parts of the culture, and then used automated ribosomal intergenic spacer analysis (ARISA) to see which strains had co-flocculated. This technique can determine the relative abundance of different yeast species in a sample by sequencing a particular region of ribosomal DNA.

In this experiment, overexpression of each of the three FLO genes had significant effects on at least one of the species in the consortium. The species composition of the flocculated yeasts was uniquely different, depending on which gene was overexpressed.

The discovery that the flocculation genes have individual effects on association with other species goes a long way towards explaining why S. cerevisiae has maintained this gene family with so many members that apparently have the same function—at least, when you study a pure culture. Differential regulation of the FLO genes could affect the spectrum of other species that our favorite yeast interacts with. 

So, our friend S. cerevisiae didn’t actually get out of the lab in these experiments, but at least it got to rub shoulders with some of its old friends (buds?) from the vineyard. These experiments are a good reminder for researchers to think outside the lab.

And when S. cerevisiae and its friends get together outside the lab, beautiful things can happen. We’ll drink a toast to that!

by Maria Costanzo, Ph.D., Senior Biocuration Scientist, SGD

If yeast could sing about its forced migration to the lab, it might sound like this.

Categories: Research Spotlight

Tags: vineyard , Saccharomyces cerevisiae , flocculation