New & Noteworthy

The Latest Buzz on Stressed-Out Mitochondria

September 30, 2015

Stinging wasps get our attention, and with good reason—getting stung hurts a lot! If you see wasps going into a nest within the walls of your house, you’ll likely try to block their access.

Just like wasps who can’t get into their nest, excess mitochondrial precursor proteins that can’t be imported into mitochondria are bad news for the cell—but it’s developed ways to deal with them. Image via

But this could backfire: instead of being able to peacefully go into their nest, a swarm of angry wasps could be buzzing around looking for trouble. It might get so bad that you’ll need to call in an exterminator to take care of the problem.

Mitochondrial proteins might seem a lot less scary than wasps, but it turns out that they can also cause trouble if they can’t get into mitochondria. In two new letters to Nature, Wrobel and colleagues and Wang and Chen used complementary approaches to ask what happens when dysfunctional mitochondria aren’t able to import all of the proteins that are waiting to get in. 

What they both found was that these piled up proteins cause real problems for the cells. In desperation, the cells slow down protein synthesis to reduce the excess, and also turn to their own exterminator, the proteasome, to keep these proteins under control.

This is a paradigm shift in thinking about how poorly functioning mitochondria cause disease. In the past, almost everyone focused on how damaged mitochondria couldn’t make enough energy for a cell. Now it looks like there are other ways for a nonworking mitochondria to do a cell in. And new targets for scientists to go after in treating mitochondrial disease.

As we all know, mitochondria are the powerhouses of the cell, where energy is generated, and they’re also the site of many other essential biochemical reactions. They’re composed of about 1,000 proteins, and nearly all of those are synthesized in the cytoplasm and then imported into mitochondria by an intricate system of transporters.

In order to find out what happens when these 1,000 proteins don’t get into mitochondria as efficiently as they should, both groups created strains whose mitochondrial import was impaired.

Wrobel and colleagues used the temperature-sensitive mia40-4int mutation, affecting an essential component of the mitochondrial import system. Wang and Chen started with the aac2-A128P mutation in PET9 (which is also known as AAC2), an ADP/ATP carrier of the mitochondrial inner membrane. Overexpression of the aac2-A128P allele causes mitochondrial dysfunction and eventual cell death.

Wrobel and colleagues decided to get a comprehensive look at what happens in the mia40-4int mutant by assaying its transcriptome and proteome, using RNA-seq and stable isotope labelling by amino acids in cell culture (SILAC), respectively. Surprisingly, one of the biggest differences from wild type that they saw in the import-defective mutant was a decrease in cytoplasmic translation. Whether they looked at the mRNAs encoding ribosomal proteins, the proteins themselves, or the polysome content and translational activity of the cells, everything pointed to down-regulation of translation. And at the same time, the proteasome—the molecular machine that breaks down unwanted proteins—was activated.

To verify that what they were seeing wasn’t peculiar to the mia40-4int mutant, Wrobel and colleagues slowed down mitochondrial import in several other ways: using different mia40 mutant alleles, other import mutants, or treatment with a chemical that destroys the mitochondrial membrane potential required for import. Under these different conditions causing the accumulation of mitochondrial precursor proteins in the cytoplasm, they still saw decreased cytoplasmic translation and increased proteasome activity.

Quick, Henry, the Flit!” When mitochondrial precursors start to swarm around the cytoplasm, the cell keeps them under control by activating the proteasome. Upper image, Flit insecticide, by Bullenwächter, lower image, structure of the yeast 26S proteasome by FridoFoe; both via Wikimedia Commons

Wang and Chen took a different approach, looking to see whether over-expression of any other genes could compensate for the lethality of overexpressing the aac2-A128P allele. The researchers transformed the mutant with a library of yeast genes on a multicopy plasmid, and found 40 genes whose expression could keep it alive.

The suppressor genes found by Wang and Chen were all involved in some aspect of synthesis or degradation of cytoplasmic proteins, just like the genes found by Wrobel and colleagues whose expression was altered in the mia40 mutant. And Wang and Chen also verified that these suppressors weren’t specific to the aac2-A128P mutation: they suppressed a variety of other mutations that decreased import.

Both groups observed precursors of mitochondrial proteins accumulating in the cytosol of the mutant strains they studied. Wang and Chen saw a couple other very interesting proteins increase in abundance: Gis2 and Nog2. These proteins are involved in regulating ribosome function, and the researchers speculate that their stabilization during this stress response contributes to the translational down-regulation. Intriguingly, their human orthologs are implicated in neuromuscular degenerative disease.

So, using orthogonal approaches, the two groups converged on the same model: a newly discovered cellular pathway that regulates cytosolic translation and protein degradation in order to deal with the stress of inefficient mitochondrial import. Wrobel and colleagues have named it UPRam, for Unfolded Protein Response activated by mistargeting of proteins, while Wang and Chen call it mPOS, mitochondrial Precursor Over-accumulation Stress.

Before this work, it was unknown whether cytosolic pathways were even affected by mitochondrial dysfunction. Now we know that the cell has a specific response when mitochondrial precursor proteins begin swarming in the cytosol, unable to get into their home: it slows down the production of those proteins and calls in the proteasome exterminator to take care of them.

We usually think of mitochondrial disease symptoms as being caused by the reduced energy generation of sick mitochondria, or by the lack of other key events that happen in mitochondria—for example, the synthesis of the iron-sulfur clusters that some vitally important enzymes need. Now, these findings raise the possibility that proteostatic stress on the cell caused by the accumulation of mitochondrial precursors could also lead to impaired cell function and disease.

Perhaps drugs that inhibited cytoplasmic translation, or activated the proteasome exterminator, would be helpful in reducing the buzzing swarm of mitochondrial precursor proteins. Wouldn’t it be wonderful if this knowledge suggested new avenues of treatment to take some of the sting out of human mitochondrial disease?

by Maria Costanzo, Ph.D., Senior Biocuration Scientist, SGD

Categories: Research Spotlight

Tags: proteostatic stress , mitochondria , Saccharomyces cerevisiae , proteasome