AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Zou S
  • References

Author: Zou S


References 32 references


No citations for this author.

Download References (.nbib)

  • Zu C, et al. (2025) A Miniaturized Percoll Gradient Method for Isolation of Quiescent Cells of Yeast. Bio Protoc 15(8):e5279 PMID:40291419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu Y, et al. (2023) Chemical Composition and Flavor Characteristics of Cider Fermented with Saccharomyces cerevisiae and Non-Saccharomyces cerevisiae. Foods 12(19) PMID:37835218
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Han X, et al. (2022) Mitochondrial Porin Is Involved in Development, Virulence, and Autophagy in Fusarium graminearum. J Fungi (Basel) 8(9) PMID:36135661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu H, et al. (2022) High-Level Production of Hydroxytyrosol in Engineered Saccharomyces cerevisiae. ACS Synth Biol 11(11):3706-3713 PMID:36345886
    • SGD Paper
    • DOI full text
    • PubMed
  • Zou S, et al. (2022) Comparison of the Unfolded Protein Response in Cellobiose Utilization of Recombinant Angel- and W303-1A-Derived Yeast Expressing β-Glucosidase. Front Bioeng Biotechnol 10:837720 PMID:35433667
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang C, et al. (2021) The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Appl Environ Microbiol 87(6) PMID:33452023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S, et al. (2021) Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling. Biotechnol Appl Biochem 68(5):953-963 PMID:32658331
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang C, et al. (2020) The ADP-ribosylation factor-like small GTPase FgArl1 participates in growth, pathogenicity and DON production in Fusarium graminearum. Fungal Biol 124(11):969-980 PMID:33059848
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen L, et al. (2019) Autophagy requires Tip20 in Saccharomyces cerevisiae. J Biosci 44(1) PMID:30837368
    • SGD Paper
    • PubMed
  • Zhou F, et al. (2017) A Rab5 GTPase module is important for autophagosome closure. PLoS Genet 13(9):e1007020 PMID:28934205
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu X, et al. (2017) Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Res Microbiol 168(7):626-635 PMID:28499955
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu X, et al. (2017) A genetic screen in combination with biochemical analysis in Saccharomyces cerevisiae indicates that phenazine-1-carboxylic acid is harmful to vesicular trafficking and autophagy. Sci Rep 7(1):1967 PMID:28512289
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S, et al. (2017) The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae. Mol Cells 40(9):643-654 PMID:28927260
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ahmad M, et al. (2016) RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 44(13):6335-49 PMID:27257063
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guo H, et al. (2015) Reducing β-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion. Bioresour Technol 187:362-368 PMID:25863900
    • SGD Paper
    • DOI full text
    • PubMed
  • Zou S, et al. (2015) Bet3 participates in autophagy through GTPase Ypt1 in Saccharomyces cerevisiae. Cell Biol Int 39(4):466-74 PMID:25581738
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen Y, et al. (2014) A Vps21 endocytic module regulates autophagy. Mol Biol Cell 25(20):3166-77 PMID:25143401
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toropova K, et al. (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. Elife 3 PMID:25380312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang H, et al. (2014) Improving bgl1 gene expression in Saccharomyces cerevisiae through meiosis in an isogenic triploid. Biotechnol Lett 36(6):1279-85 PMID:24563302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ye M, et al. (2014) Ypt1 suppresses defects of vesicle trafficking and autophagy in Ypt6 related mutants. Cell Biol Int 38(5):663-74 PMID:24843892
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu L, et al. (2013) Expression of cellulase genes in Saccharomyces cerevisiae via δ-integration subject to auxotrophic markers. Biotechnol Lett 35(8):1303-7 PMID:23609230
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang G, et al. (2013) Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Bioresour Technol 142:154-61 PMID:23735797
    • SGD Paper
    • DOI full text
    • PubMed
  • Zou S, et al. (2013) Trs130 participates in autophagy through GTPases Ypt31/32 in Saccharomyces cerevisiae. Traffic 14(2):233-46 PMID:23078654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Redwine WB, et al. (2012) Structural basis for microtubule binding and release by dynein. Science 337(6101):1532-1536 PMID:22997337
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu ZQ, et al. (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8(6):883-92 PMID:22652539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S, et al. (2012) Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae. Genetics 191(2):451-60 PMID:22426882
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen YB, et al. (2011) Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 195(2):263-76 PMID:21987637
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu Y, et al. (1999) Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev 13(20):2738-49 PMID:10541559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S and Voytas DF (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci U S A 94(14):7412-6 PMID:9207105
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S, et al. (1996) The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends. Nucleic Acids Res 24(23):4825-31 PMID:8972872
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou S, et al. (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 10(5):634-45 PMID:8598292
    • SGD Paper
    • DOI full text
    • PubMed
  • Zou S, et al. (1995) The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR. Proc Natl Acad Sci U S A 92(3):920-4 PMID:7846079
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top