Fields JK, et al. (2023) Diverse modes of regulating methyltransferase activity by histone ubiquitination. Curr Opin Struct Biol 82:102649 PMID:37429149
Haile ST, et al. (2023) The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. Biochim Biophys Acta Gene Regul Mech 1866(2):194929 PMID:36965704
Morrow ME, et al. (2018) Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep 19(10) PMID:30150323
Yan M and Wolberger C (2015) Uncovering the role of Sgf73 in maintaining SAGA deubiquitinating module structure and activity. J Mol Biol 427(8):1765-78 PMID:25526805
Cieniewicz AM, et al. (2014) The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 13(11):2896-910 PMID:25106422
Fiedler KL, et al. (2013) A quantitative analysis of histone methylation and acetylation isoforms from their deuteroacetylated derivatives: application to a series of knockout mutants. J Mass Spectrom 48(5):608-15 PMID:23674285
Bheda P, et al. (2012) Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci U S A 109(16):E916-25 PMID:22474337
Samara NL, et al. (2012) A role for intersubunit interactions in maintaining SAGA deubiquitinating module structure and activity. Structure 20(8):1414-24 PMID:22771212
Berndsen CE and Wolberger C (2011) A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 418(1):102-10 PMID:21771579
Samara NL, et al. (2010) Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328(5981):1025-9 PMID:20395473
Feeser EA and Wolberger C (2008) Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. J Mol Biol 380(3):520-31 PMID:18538788
Avalos JL, et al. (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17(6):855-68 PMID:15780941
Ke A and Wolberger C (2003) Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera. Protein Sci 12(2):306-12 PMID:12538894
Ke A, et al. (2002) Structural and thermodynamic characterization of the DNA binding properties of a triple alanine mutant of MATalpha2. Structure 10(7):961-71 PMID:12121651
VanDemark AP, et al. (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105(6):711-20 PMID:11440714
Jabet C, et al. (2000) Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1 x Ssn6. J Biol Chem 275(12):9011-8 PMID:10722750
Smith JS, et al. (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 97(12):6658-63 PMID:10841563
Piper DE, et al. (1999) Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96(4):587-97 PMID:10052460
Batchelor AH, et al. (1998) The structure of GABPalpha/beta: an ETS domain- ankyrin repeat heterodimer bound to DNA. Science 279(5353):1037-41 PMID:9461436
Li T, et al. (1998) Crystal structure of the MATa1/MATalpha2 homeodomain heterodimer in complex with DNA containing an A-tract. Nucleic Acids Res 26(24):5707-18 PMID:9838003
Jin Y, et al. (1995) Altered DNA recognition and bending by insertions in the alpha 2 tail of the yeast a1/alpha 2 homeodomain heterodimer. Science 270(5234):290-3 PMID:7569977
Wolberger C, et al. (1991) Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67(3):517-28 PMID:1682054