AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Wickner W
  • References

Author: Wickner W


References 77 references


No citations for this author.

Download References (.nbib)

  • Orr A and Wickner W (2024) Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Mol Biol Cell 35(5):ar71 PMID:38536444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A and Wickner W (2023) PI3P regulates multiple stages of membrane fusion. Mol Biol Cell 34(3):ar17 PMID:36735517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A and Wickner W (2023) MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Mol Biol Cell 34(12):ar123 PMID:37672336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wickner W, et al. (2023) Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Mol Biol Cell 34(9):ar88 PMID:37314849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A and Wickner W (2022) Sec18 supports membrane fusion by promoting Sec17 membrane association. Mol Biol Cell 33(13):ar127 PMID:36103252
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A, et al. (2022) Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Mol Biol Cell 33(5):ar38 PMID:35171720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torng T and Wickner W (2021) Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Mol Biol Cell 32(21):ar19 PMID:34495682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee M, et al. (2020) A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proc Natl Acad Sci U S A 117(14):7739-7744 PMID:32213587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torng T, et al. (2020) Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Mol Biol Cell 31(10):1060-1068 PMID:32160129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jun Y and Wickner W (2019) Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc Natl Acad Sci U S A 116(47):23573-23581 PMID:31685636
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song H and Wickner W (2019) Tethering guides fusion-competent trans-SNARE assembly. Proc Natl Acad Sci U S A 116(28):13952-13957 PMID:31235584
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harner M and Wickner W (2018) Assembly of intermediates for rapid membrane fusion. J Biol Chem 293(4):1346-1352 PMID:29208657
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A, et al. (2017) HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Mol Biol Cell 28(7):975-983 PMID:28148647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song H and Wickner W (2017) A short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly. Mol Biol Cell 28(17):2282-2289 PMID:28637767
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song H, et al. (2017) Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. Elife 6 PMID:28718762
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zick M and Wickner W (2016) Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol Biol Cell 27(16):2590-7 PMID:27385334
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orr A, et al. (2015) Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Mol Biol Cell 26(2):305-15 PMID:25411340
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karunakaran V and Wickner W (2013) Fusion proteins and select lipids cooperate as membrane receptors for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vam7p. J Biol Chem 288(40):28557-66 PMID:23955338
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zick M and Wickner W (2013) The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Mol Biol Cell 24(23):3746-53 PMID:24088569
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zick M and Wickner W (2012) Phosphorylation of the effector complex HOPS by the vacuolar kinase Yck3p confers Rab nucleotide specificity for vacuole docking and fusion. Mol Biol Cell 23(17):3429-37 PMID:22787280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hickey CM and Wickner W (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol Cell 21(13):2297-305 PMID:20462954
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115-36 PMID:20521906
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu H and Wickner W (2010) Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. J Biol Chem 285(50):39359-65 PMID:20937838
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu H, et al. (2010) HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J 29(12):1948-60 PMID:20473271
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hickey CM, et al. (2009) The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. J Biol Chem 284(24):16118-16125 PMID:19386605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mima J and Wickner W (2009) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 106(38):16191-6 PMID:19805279
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mima J and Wickner W (2009) Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 284(40):27114-22 PMID:19654322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stroupe C, et al. (2009) Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc Natl Acad Sci U S A 106(42):17626-33 PMID:19826089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mima J, et al. (2008) Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 27(15):2031-42 PMID:18650938
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starai VJ, et al. (2008) HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 19(6):2500-8 PMID:18385512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fratti RA and Wickner W (2007) Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. J Biol Chem 282(17):13133-8 PMID:17347148
    • SGD Paper
    • DOI full text
    • PubMed
  • Fratti RA, et al. (2007) Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 282(20):14861-7 PMID:17400548
    • SGD Paper
    • DOI full text
    • PubMed
  • Jun Y and Wickner W (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 104(32):13010-5 PMID:17664431
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jun Y, et al. (2007) Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J 26(24):4935-45 PMID:18007597
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starai VJ, et al. (2007) Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A 104(34):13551-8 PMID:17699614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jun Y, et al. (2006) Reversible, cooperative reactions of yeast vacuole docking. EMBO J 25(22):5260-9 PMID:17082764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stroupe C, et al. (2006) Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 25(8):1579-89 PMID:16601699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu H and Wickner W (2006) Bem1p is a positive regulator of the homotypic fusion of yeast vacuoles. J Biol Chem 281(37):27158-66 PMID:16854988
    • SGD Paper
    • DOI full text
    • PubMed
  • Starai VJ, et al. (2005) Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. J Biol Chem 280(17):16754-62 PMID:15737991
    • SGD Paper
    • DOI full text
    • PubMed
  • Fratti RA, et al. (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167(6):1087-98 PMID:15611334
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jun Y, et al. (2004) Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem 279(51):53186-95 PMID:15485855
    • SGD Paper
    • DOI full text
    • PubMed
  • Thorngren N, et al. (2004) A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 23(14):2765-76 PMID:15241469
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kato M and Wickner W (2003) Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proc Natl Acad Sci U S A 100(11):6398-403 PMID:12748377
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang L, et al. (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 160(3):365-74 PMID:12566429
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eitzen G, et al. (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158(4):669-79 PMID:12177043
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seeley ES, et al. (2002) Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 13(3):782-94 PMID:11907261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang L, et al. (2002) Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108(3):357-69 PMID:11853670
    • SGD Paper
    • DOI full text
    • PubMed
  • Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21(6):1241-7 PMID:11889030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eitzen G, et al. (2001) Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. EMBO J 20(20):5650-6 PMID:11598008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kato M and Wickner W (2001) Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J 20(15):4035-40 PMID:11483507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eitzen G, et al. (2000) Sequential action of two GTPases to promote vacuole docking and fusion. EMBO J 19(24):6713-20 PMID:11118206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayer A, et al. (2000) Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol Biol Cell 11(3):807-17 PMID:10712501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Price A, et al. (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148(6):1231-8 PMID:10725336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Price A, et al. (2000) Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148(6):1223-29 PMID:10725335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ungermann C, et al. (2000) A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proc Natl Acad Sci U S A 97(16):8889-91 PMID:10908678
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang L, et al. (2000) The docking of primed vacuoles can be reversibly arrested by excess Sec17p (alpha-SNAP). J Biol Chem 275(30):22862-7 PMID:10816559
    • SGD Paper
    • DOI full text
    • PubMed
  • Wickner W and Haas A (2000) Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Rev Biochem 69:247-75 PMID:10966459
    • SGD Paper
    • DOI full text
    • PubMed
  • Ungermann C, et al. (1999) Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J Cell Biol 145(7):1435-42 PMID:10385523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ungermann C, et al. (1999) Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc Natl Acad Sci U S A 96(20):11194-9 PMID:10500153
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sato K and Wickner W (1998) Functional reconstitution of ypt7p GTPase and a purified vacuole SNARE complex. Science 281(5377):700-2 PMID:9685264
    • SGD Paper
    • DOI full text
    • PubMed
  • Ungermann C and Wickner W (1998) Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J 17(12):3269-76 PMID:9628864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ungermann C, et al. (1998) A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 140(1):61-9 PMID:9425154
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ungermann C, et al. (1998) Defining the functions of trans-SNARE pairs. Nature 396(6711):543-8 PMID:9859990
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu Z, et al. (1998) LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93(7):1125-34 PMID:9657146
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A and Wickner W (1997) Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 136(2):307-17 PMID:9015302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu Z, et al. (1997) A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136(2):299-306 PMID:9015301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haas A and Wickner W (1996) Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF). EMBO J 15(13):3296-305 PMID:8670830
    • SGD Paper
    • PMC full text
    • PubMed
  • Mayer A, et al. (1996) Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85(1):83-94 PMID:8620540
    • SGD Paper
    • DOI full text
    • PubMed
  • Nicolson T, et al. (1996) A truncated form of the Pho80 cyclin of Saccharomyces cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance. J Bacteriol 178(14):4047-51 PMID:8763930
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Warren G and Wickner W (1996) Organelle inheritance. Cell 84(3):395-400 PMID:8608593
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu Z and Wickner W (1996) Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 132(5):787-94 PMID:8603912
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haas A, et al. (1995) The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J 14(21):5258-70 PMID:7489715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haas A, et al. (1994) G-protein ligands inhibit in vitro reactions of vacuole inheritance. J Cell Biol 126(1):87-97 PMID:8027189
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conradt B, et al. (1992) In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 119(6):1469-79 PMID:1334958
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weisman LS and Wickner W (1992) Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem 267(1):618-23 PMID:1730622
    • SGD Paper
    • PubMed
  • Guthrie BA and Wickner W (1988) Yeast vacuoles fragment when microtubules are disrupted. J Cell Biol 107(1):115-20 PMID:3292537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weisman LS, et al. (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105(4):1539-47 PMID:2444598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top