Bueno-Arribas M and Vincent O (2025) Identification of a novel mechanism for regulation of the early autophagy machinery assembly by PKA. Autophagy Rep 4(1):2503226 PMID:40395985
Bueno-Arribas M, et al. (2025) The PKA Signaling Pathway Regulates the Association of the Autophagy Initiation Complex With the Lipidation Machinery. J Mol Biol 437(5):168954 PMID:39826713
Bueno-Arribas M, et al. (2023) Coiled-coil-mediated dimerization of Atg16 is required for binding to the PROPPIN Atg21. Open Biol 13(11):230192 PMID:37989223
Bueno-Arribas M, et al. (2021) A conserved ATG2 binding site in WIPI4 and yeast Hsv2 is disrupted by mutations causing β-propeller protein-associated neurodegeneration. Hum Mol Genet 31(1):111-121 PMID:34368840
Vincent O, et al. (2021) The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 9:737071 PMID:34540850
Herrador A, et al. (2015) Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Mol Biol Cell 26(11):2128-38 PMID:25851600
Herrador A, et al. (2013) A mechanism for protein monoubiquitination dependent on a trans-acting ubiquitin-binding domain. J Biol Chem 288(23):16206-16211 PMID:23645667
Bañuelos C, et al. (2012) EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012:657942 PMID:22500103
Becuwe M, et al. (2012) A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol 196(2):247-59 PMID:22249293
Herrador A, et al. (2010) Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol 30(4):897-907 PMID:20028738
Galindo A, et al. (2007) PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 8(10):1346-64 PMID:17696968
Vincent O, et al. (2001) Interaction of the Srb10 kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae. Mol Cell Biol 21(17):5790-6 PMID:11486018
Vincent O, et al. (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15(9):1104-14 PMID:11331606
Zaragoza O, et al. (2001) Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Biochem J 359(Pt 1):193-201 PMID:11563983
Enjalbert B, et al. (2000) Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen and readily mobilize it in a glucose-depleted medium. Microbiology (Reading) 146 ( Pt 10):2685-2694 PMID:11021944
Vincent O and Carlson M (1999) Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J 18(23):6672-81 PMID:10581241
Vincent O and Carlson M (1998) Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 17(23):7002-8 PMID:9843506
Vincent O and Gancedo JM (1995) Expression of a yeast gene can be blocked by insertion of short yeast DNA fragments between a UAS and the TATA box. Curr Genet 27(4):387-9 PMID:7614563
Vincent O and Gancedo JM (1995) Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast. J Biol Chem 270(21):12832-8 PMID:7759539
Mercado JJ, et al. (1991) Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. FEBS Lett 291(1):97-100 PMID:1657641