AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Tschochner H
  • References

Author: Tschochner H


References 61 references


No citations for this author.

Download References (.nbib)

  • Babl V, et al. (2024) Establishment of closed 35S ribosomal RNA gene chromatin in stationary Saccharomyces cerevisiae cells. Nucleic Acids Res 52(20):12208-12226 PMID:39373531
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daiß JL, et al. (2023) Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 404(11-12):1003-1023 PMID:37454246
    • SGD Paper
    • DOI full text
    • PubMed
  • Pöll G, et al. (2023) Impact of the yeast S0/uS2-cluster ribosomal protein rpS21/eS21 on rRNA folding and the architecture of small ribosomal subunit precursors. PLoS One 18(3):e0283698 PMID:36996028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwank K, et al. (2023) Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 404(11-12):979-1002 PMID:37823775
    • SGD Paper
    • DOI full text
    • PubMed
  • Merkl PE, et al. (2022) Analysis of Yeast RNAP I Transcription of Nucleosomal Templates In Vitro. Methods Mol Biol 2533:39-59 PMID:35796981
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Merkl PE, et al. (2022) Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae. Methods Mol Biol 2533:63-70 PMID:35796982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwank K, et al. (2022) RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading. J Biol Chem 298(5):101862 PMID:35341765
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pöll G, et al. (2021) Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors. PLoS One 16(11):e0252497 PMID:34813592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Merkl PE, et al. (2020) RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 295(15):4782-4795 PMID:32060094
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Darrière T, et al. (2019) Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 15(5):e1008157 PMID:31136569
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hannig K, et al. (2019) The C-terminal region of Net1 is an activator of RNA polymerase I transcription with conserved features from yeast to human. PLoS Genet 15(2):e1008006 PMID:30802237
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Linnemann J, et al. (2019) Impact of two neighbouring ribosomal protein clusters on biogenesis factor binding and assembly of yeast late small ribosomal subunit precursors. PLoS One 14(1):e0203415 PMID:30653518
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pöll G, et al. (2017) Structural transitions during large ribosomal subunit maturation analyzed by tethered nuclease structure probing in S. cerevisiae. PLoS One 12(7):e0179405 PMID:28686620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pilsl M, et al. (2016) Analysis of S. cerevisiae RNA Polymerase I Transcription In Vitro. Methods Mol Biol 1455:99-108 PMID:27576713
    • SGD Paper
    • DOI full text
    • PubMed
  • Pilsl M, et al. (2016) Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 7:12126 PMID:27418187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Babl V, et al. (2015) Chromatin Endogenous Cleavage (ChEC) as a Method to Quantify Protein Interaction with Genomic DNA in Saccharomyces cerevisiae. Methods Mol Biol 1334:219-32 PMID:26404153
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohmayer U, et al. (2015) Studies on the Coordination of Ribosomal Protein Assembly Events Involved in Processing and Stabilization of Yeast Early Large Ribosomal Subunit Precursors. PLoS One 10(12):e0143768 PMID:26642313
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hamperl S, et al. (2014) Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 42(1):e2 PMID:24106087
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hamperl S, et al. (2014) Purification of specific chromatin domains from single-copy gene loci in Saccharomyces cerevisiae. Methods Mol Biol 1094:329-41 PMID:24163000
    • SGD Paper
    • DOI full text
    • PubMed
  • Merkl P, et al. (2014) Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 34(20):3817-27 PMID:25092870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hierlmeier T, et al. (2013) Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res 41(2):1191-210 PMID:23209026
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Németh A, et al. (2013) RNA polymerase I termination: Where is the end? Biochim Biophys Acta 1829(3-4):306-17 PMID:23092677
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohmayer U, et al. (2013) Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 8(7):e68412 PMID:23874617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jakob S, et al. (2012) Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes. PLoS One 7(3):e32552 PMID:22431976
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reiter A, et al. (2012) The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 31(16):3480-93 PMID:22805593
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reiter A, et al. (2011) Reduction in ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-term TOR inactivation in Saccharomyces cerevisiae. Mol Cell Biol 31(4):803-17 PMID:21149576
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wittner M, et al. (2011) Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 145(4):543-54 PMID:21565613
    • SGD Paper
    • DOI full text
    • PubMed
  • Merl J, et al. (2010) Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-ribosomes. Nucleic Acids Res 38(9):3068-80 PMID:20100801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neueder A, et al. (2010) A local role for the small ribosomal subunit primary binder rpS5 in final 18S rRNA processing in yeast. PLoS One 5(4):e10194 PMID:20419091
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Philippi A, et al. (2010) TOR-dependent reduction in the expression level of Rrn3p lowers the activity of the yeast RNA Pol I machinery, but does not account for the strong inhibition of rRNA production. Nucleic Acids Res 38(16):5315-26 PMID:20421203
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clemente-Blanco A, et al. (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458(7235):219-22 PMID:19158678
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kühn H, et al. (2009) The Noc-domain containing C-terminus of Noc4p mediates both formation of the Noc4p-Nop14p submodule and its incorporation into the SSU processome. PLoS One 4(12):e8370 PMID:20019888
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pöll G, et al. (2009) rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 4(12):e8249 PMID:20011513
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reich C, et al. (2009) The archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitro. Mol Microbiol 71(4):989-1002 PMID:19183282
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerber J, et al. (2008) Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 36(3):793-802 PMID:18084032
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferreira-Cerca S, et al. (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell 28(3):446-57 PMID:17996708
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuhn CD, et al. (2007) Functional architecture of RNA polymerase I. Cell 131(7):1260-72 PMID:18160037
    • SGD Paper
    • DOI full text
    • PubMed
  • Ferreira-Cerca S, et al. (2005) Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 20(2):263-75 PMID:16246728
    • SGD Paper
    • DOI full text
    • PubMed
  • Bier M, et al. (2004) The composition of the RNA polymerase I transcription machinery switches from initiation to elongation mode. FEBS Lett 564(1-2):41-6 PMID:15094040
    • SGD Paper
    • DOI full text
    • PubMed
  • Milkereit P, et al. (2003) The pre-ribosomal network. Nucleic Acids Res 31(3):799-804 PMID:12560474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milkereit P, et al. (2003) A Noc complex specifically involved in the formation and nuclear export of ribosomal 40 S subunits. J Biol Chem 278(6):4072-81 PMID:12446671
    • SGD Paper
    • DOI full text
    • PubMed
  • Tschochner H and Hurt E (2003) Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 13(5):255-63 PMID:12742169
    • SGD Paper
    • DOI full text
    • PubMed
  • Bischler N, et al. (2002) Localization of the yeast RNA polymerase I-specific subunits. EMBO J 21(15):4136-44 PMID:12145213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grandi P, et al. (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10(1):105-15 PMID:12150911
    • SGD Paper
    • DOI full text
    • PubMed
  • Iben S, et al. (2002) TFIIH plays an essential role in RNA polymerase I transcription. Cell 109(3):297-306 PMID:12015980
    • SGD Paper
    • DOI full text
    • PubMed
  • Fath S, et al. (2001) Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc Natl Acad Sci U S A 98(25):14334-9 PMID:11717393
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milkereit P, et al. (2001) Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell 105(4):499-509 PMID:11371346
    • SGD Paper
    • DOI full text
    • PubMed
  • Fath S, et al. (2000) Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 149(3):575-90 PMID:10791972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peyroche G, et al. (2000) The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 19(20):5473-82 PMID:11032814
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bischler N, et al. (1998) Specific interaction and two-dimensional crystallization of histidine tagged yeast RNA polymerase I on nickel-chelating lipids. Biophys J 74(3):1522-32 PMID:9512048
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milkereit P and Tschochner H (1998) A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 17(13):3692-703 PMID:9649439
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milkereit P, et al. (1997) Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol Chem 378(12):1433-43 PMID:9461342
    • SGD Paper
    • DOI full text
    • PubMed
  • Faulstich D, et al. (1996) Architecture of coatomer: molecular characterization of delta-COP and protein interactions within the complex. J Cell Biol 135(1):53-61 PMID:8858162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tschochner H (1996) A novel RNA polymerase I-dependent RNase activity that shortens nascent transcripts from the 3' end. Proc Natl Acad Sci U S A 93(23):12914-9 PMID:8917519
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerich B, et al. (1995) Non-clathrin-coat protein alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc Natl Acad Sci U S A 92(8):3229-33 PMID:7724544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li Y, et al. (1994) RNA polymerase II initiation factor interactions and transcription start site selection. Science 263(5148):805-7 PMID:8303296
    • SGD Paper
    • DOI full text
    • PubMed
  • Flanagan PM, et al. (1992) Simple derivation of TFIID-dependent RNA polymerase II transcription systems from Schizosaccharomyces pombe and other organisms, and factors required for transcriptional activation. Proc Natl Acad Sci U S A 89(16):7659-63 PMID:1502179
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sayre MH, et al. (1992) Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. J Biol Chem 267(32):23383-7 PMID:1429681
    • SGD Paper
    • PubMed
  • Sayre MH, et al. (1992) Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem 267(32):23376-82 PMID:1331084
    • SGD Paper
    • PubMed
  • Tschochner H, et al. (1992) Yeast RNA polymerase II initiation factor e: isolation and identification as the functional counterpart of human transcription factor IIB. Proc Natl Acad Sci U S A 89(23):11292-6 PMID:1454810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Flanagan PM, et al. (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350(6317):436-8 PMID:2011193
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top