AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Thomas D
  • References

Author: Thomas D


References 50 references


No citations for this author.

Download References (.nbib)

  • Lakowski TM, et al. (2015) Arginine methylation in yeast proteins during stationary-phase growth and heat shock. Amino Acids 47(12):2561-71 PMID:26189025
    • SGD Paper
    • DOI full text
    • PubMed
  • Kliegman JI, et al. (2013) Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep 5(6):1725-36 PMID:24360963
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lakowski TM, et al. (2013) MS³ fragmentation patterns of monomethylarginine species and the quantification of all methylarginine species in yeast using MRM³. J Proteomics 80:43-54 PMID:23333926
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee TA, et al. (2010) Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 21(3):456-69 PMID:19940020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (2008) Supramolecular organization of the yeast F1Fo-ATP synthase. Biol Cell 100(10):591-601 PMID:18447829
    • SGD Paper
    • DOI full text
    • PubMed
  • Menant A, et al. (2006) Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells. EMBO J 25(19):4436-47 PMID:16977312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Menant A, et al. (2006) Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. J Biol Chem 281(17):11744-54 PMID:16497670
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbey R, et al. (2005) Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBO J 24(3):521-32 PMID:15660125
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vignols F, et al. (2005) A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A 102(46):16729-34 PMID:16272220
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vignols F, et al. (2003) Redox control of Hsp70-Co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein. J Biol Chem 278(7):4516-23 PMID:12433921
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuras L, et al. (2002) Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol Cell 10(1):69-80 PMID:12150908
    • SGD Paper
    • DOI full text
    • PubMed
  • Michel S, et al. (2002) Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol 46(1):269-80 PMID:12366849
    • SGD Paper
    • DOI full text
    • PubMed
  • Baudouin-Cornu P, et al. (2001) Molecular evolution of protein atomic composition. Science 293(5528):297-300 PMID:11452124
    • SGD Paper
    • DOI full text
    • PubMed
  • Gellon L, et al. (2001) Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol Genet Genomics 265(6):1087-96 PMID:11523781
    • SGD Paper
    • DOI full text
    • PubMed
  • Cherest H, et al. (2000) Polyglutamylation of folate coenzymes is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae. J Biol Chem 275(19):14056-63 PMID:10799479
    • SGD Paper
    • DOI full text
    • PubMed
  • Patton EE, et al. (2000) SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J 19(7):1613-24 PMID:10747029
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rouillon A, et al. (2000) Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex. EMBO J 19(2):282-94 PMID:10637232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (2000) Reverse methionine biosynthesis from S-adenosylmethionine in eukaryotic cells. J Biol Chem 275(52):40718-24 PMID:11013242
    • SGD Paper
    • DOI full text
    • PubMed
  • Camara-Clayette V, et al. (1999) The repressor which binds the -75 GATA motif of the GPB promoter contains Ku70 as the DNA binding subunit. Nucleic Acids Res 27(7):1656-63 PMID:10075997
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rouillon A, et al. (1999) Transport of sulfonium compounds. Characterization of the s-adenosylmethionine and s-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J Biol Chem 274(40):28096-105 PMID:10497160
    • SGD Paper
    • DOI full text
    • PubMed
  • Blaiseau PL and Thomas D (1998) Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. EMBO J 17(21):6327-36 PMID:9799240
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mouaheb N, et al. (1998) In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95(6):3312-7 PMID:9501259
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patton EE, et al. (1998) Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12(5):692-705 PMID:9499404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blaiseau PL, et al. (1997) Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism. Mol Cell Biol 17(7):3640-8 PMID:9199298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cherest H, et al. (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145(3):627-35 PMID:9055073
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuras L, et al. (1997) Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding. EMBO J 16(9):2441-51 PMID:9171357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D and Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61(4):503-32 PMID:9409150
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1997) Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol Gen Genet 254(2):171-8 PMID:9108279
    • SGD Paper
    • DOI full text
    • PubMed
  • Isnard AD, et al. (1996) The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262(4):473-84 PMID:8893857
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuras L, et al. (1996) A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J 15(10):2519-29 PMID:8665859
    • SGD Paper
    • PMC full text
    • PubMed
  • van der Kemp PA, et al. (1996) Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A 93(11):5197-202 PMID:8643552
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuras L and Thomas D (1995) Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation. FEBS Lett 367(1):15-8 PMID:7601277
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuras L and Thomas D (1995) Functional analysis of Met4, a yeast transcriptional activator responsive to S-adenosylmethionine. Mol Cell Biol 15(1):208-16 PMID:7799928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1995) Met30p, a yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential protein with WD40 repeats. Mol Cell Biol 15(12):6526-34 PMID:8524217
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jacquemin-Faure I, et al. (1994) The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae. Mol Gen Genet 244(5):519-29 PMID:8078479
    • SGD Paper
    • DOI full text
    • PubMed
  • de Oliveira R, et al. (1994) Formamidopyrimidine DNA glycosylase in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 22(18):3760-4 PMID:7937089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cherest H, et al. (1993) Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol 175(17):5366-74 PMID:8366024
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gläser HU, et al. (1993) Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J 12(8):3105-10 PMID:8393782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1993) Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett 323(3):289-93 PMID:8500624
    • SGD Paper
    • DOI full text
    • PubMed
  • Nagy M, et al. (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci U S A 89(19):8966-70 PMID:1409592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138(10):2021-8 PMID:1479340
    • SGD Paper
    • DOI full text
    • PubMed
  • Thomas D, et al. (1992) MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol 12(4):1719-27 PMID:1549123
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D and Surdin-Kerjan Y (1991) The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae. Mol Gen Genet 226(1-2):224-32 PMID:1903502
    • SGD Paper
    • DOI full text
    • PubMed
  • Thomas D, et al. (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J 10(3):547-53 PMID:2001672
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cherest H, et al. (1990) Nucleotide sequence of the MET8 gene of Saccharomyces cerevisiae. Nucleic Acids Res 18(3):659 PMID:2408020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1990) Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem 265(26):15518-24 PMID:2203779
    • SGD Paper
    • PubMed
  • Thomas D and Surdin-Kerjan Y (1989) Structure of the HOM2 gene of Saccharomyces cerevisiae and regulation of its expression. Mol Gen Genet 217(1):149-54 PMID:2570346
    • SGD Paper
    • DOI full text
    • PubMed
  • Thomas D, et al. (1989) Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol Cell Biol 9(8):3292-8 PMID:2552290
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D, et al. (1988) SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol 8(12):5132-9 PMID:3072475
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thomas D and Surdin-Kerjan Y (1987) SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem 262(34):16704-9 PMID:3316224
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top