AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Suda Y
  • References

Author: Suda Y


References 35 references


No citations for this author.

Download References (.nbib)

  • Sato M, et al. (2025) The RNA-binding protein Puf5 and the HMGB protein Ixr1 regulate cell cycle-specific expression of CLB1 and CLB2 in Saccharomyces cerevisiae. PLoS One 20(2):e0316433 PMID:39899527
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Taguchi S, et al. (2025) Investigating the effects of liquid handling robot pipetting speed on yeast growth and gene expression using growth assays and RNA-seq. MicroPubl Biol 2025 PMID:40438138
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Himeno Y, et al. (2024) Roles of Pbp1, Mkt1, and Dhh1 in the regulation of gene expression in the medium containing non-fermentative carbon sources. Genes Cells 29(12):1190-1206 PMID:39460681
    • SGD Paper
    • DOI full text
    • PubMed
  • Suda Y, et al. (2024) Remodeling of the secretory pathway is coordinated with de novo membrane formation in budding yeast gametogenesis. iScience 27(10):110855 PMID:39319263
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Taguchi S, et al. (2023) Automation of yeast spot assays using an affordable liquid handling robot. SLAS Technol 28(2):55-62 PMID:36503082
    • SGD Paper
    • DOI full text
    • PubMed
  • Revilleza JEC, et al. (2022) Regulation of CLB6 expression by the cytoplasmic deadenylase Ccr4 through its coding and 3' UTR regions. PLoS One 17(5):e0268283 PMID:35522675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sato M, et al. (2022) The RNA-binding protein Puf5 and the HMGB protein Ixr1 contribute to cell cycle progression through the regulation of cell cycle-specific expression of CLB1 in Saccharomyces cerevisiae. PLoS Genet 18(7):e1010340 PMID:35905103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujii S, et al. (2021) Pan2-Pan3 complex, together with Ccr4-Not complex, has a role in the cell growth on non-fermentable carbon sources. Biochem Biophys Res Commun 570:125-130 PMID:34280615
    • SGD Paper
    • DOI full text
    • PubMed
  • Higuchi Y, et al. (2021) The eIF4E-binding protein Eap1 has similar but independent roles in cell growth and gene expression with the cytoplasmic deadenylase Ccr4. Biosci Biotechnol Biochem 85(6):1452-1459 PMID:33784392
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakamura TS, et al. (2021) Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet 17(8):e1009727 PMID:34407079
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuong Vi DT, et al. (2021) Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources. PLoS One 16(5):e0251456 PMID:33984024
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valderrama AL, et al. (2021) Pbp1 mediates the aberrant expression of genes involved in growth defect of ccr4∆ and pop2∆ mutants in yeast Saccharomyces cerevisiae. Genes Cells 26(6):381-398 PMID:33764672
    • SGD Paper
    • DOI full text
    • PubMed
  • Kurokawa K, et al. (2019) Visualization of secretory cargo transport within the Golgi apparatus. J Cell Biol 218(5):1602-1618 PMID:30858192
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lien PTK, et al. (2019) Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26. PLoS One 14(4):e0215064 PMID:30973945
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tojima T, et al. (2019) Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 132(15) PMID:31289195
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhao SB, et al. (2019) Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochim Biophys Acta Gen Subj 1863(6):1147-1157 PMID:30981741
    • SGD Paper
    • DOI full text
    • PubMed
  • Suda Y, et al. (2018) Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae. FEMS Yeast Res 18(1) PMID:29293994
    • SGD Paper
    • DOI full text
    • PubMed
  • Viet NTM, et al. (2018) Regulation of LRG1 expression by RNA-binding protein Puf5 in the budding yeast cell wall integrity pathway. Genes Cells 23(12):988-997 PMID:30281869
    • SGD Paper
    • DOI full text
    • PubMed
  • Duy DL, et al. (2017) Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS One 12(2):e0172476 PMID:28231297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nakamura TS, et al. (2017) Dynamic localization of a yeast development-specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol Biol Cell 28(26):3881-3895 PMID:29046399
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suda Y, et al. (2017) Regulation of ER-Golgi Transport Dynamics by GTPases in Budding Yeast. Front Cell Dev Biol 5:122 PMID:29473037
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kurokawa K, et al. (2016) Sar1 localizes at the rims of COPII-coated membranes in vivo. J Cell Sci 129(17):3231-7 PMID:27432890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li X, et al. (2016) Different Regulations of ROM2 and LRG1 Expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae Cell Wall Integrity Pathway. mSphere 1(5) PMID:27704052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lien PT, et al. (2016) Analysis of the Physiological Activities of Scd6 through Its Interaction with Hmt1. PLoS One 11(10):e0164773 PMID:27776129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Okumura Y, et al. (2016) The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae. mSphere 1(1) PMID:27303688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uemura T, et al. (2014) Dynamic behavior of the trans-golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55(4):694-703 PMID:24443496
    • SGD Paper
    • DOI full text
    • PubMed
  • Kurokawa K, et al. (2013) Live cell visualization of Golgi membrane dynamics by super-resolution confocal live imaging microscopy. Methods Cell Biol 118:235-42 PMID:24295310
    • SGD Paper
    • DOI full text
    • PubMed
  • Suda Y, et al. (2013) Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proc Natl Acad Sci U S A 110(47):18976-81 PMID:24194547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suda Y and Nakano A (2012) The yeast Golgi apparatus. Traffic 13(4):505-10 PMID:22132734
    • SGD Paper
    • DOI full text
    • PubMed
  • Mathieson EM, et al. (2010) Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 21(21):3693-707 PMID:20826607
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ishihara M, et al. (2009) Protein phosphatase type 1-interacting protein Ysw1 is involved in proper septin organization and prospore membrane formation during sporulation. Eukaryot Cell 8(7):1027-37 PMID:19465564
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suda Y, et al. (2009) A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly. PLoS One 4(9):e7184 PMID:19779569
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nakanishi H, et al. (2007) Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. J Cell Sci 120(Pt 5):908-16 PMID:17298976
    • SGD Paper
    • DOI full text
    • PubMed
  • Suda Y, et al. (2007) Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. Eukaryot Cell 6(11):2009-17 PMID:17905927
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suda Y, et al. (2003) Saccharomyces cerevisiae QNS1 codes for NAD(+) synthetase that is functionally conserved in mammals. Yeast 20(11):995-1005 PMID:12898714
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top