AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Roth FP
  • References

Author: Roth FP


References 49 references


No citations for this author.

Download References (.nbib)

  • Zhang J, et al. (2025) Assessing predictions on fitness effects of missense variants in HMBS in CAGI6. Hum Genet 144(2-3):173-189 PMID:39110250
    • SGD Paper
    • DOI full text
    • PubMed
  • Gebbia M, et al. (2024) A missense variant effect map for the human tumor-suppressor protein CHK2. Am J Hum Genet 111(12):2675-2692 PMID:39642869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gersing S, et al. (2024) Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol 25(1):98 PMID:38627865
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gersing S, et al. (2023) A comprehensive map of human glucokinase variant activity. Genome Biol 24(1):97 PMID:37101203
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Celaj A, et al. (2020) Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Syst 10(1):25-38.e10 PMID:31668799
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JH, et al. (2020) Yeast-Based Genetic Interaction Analysis of Human Kinome. Cells 9(5) PMID:32392905
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JH, et al. (2020) Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways. J Biol Chem 295(50):16906-16919 PMID:33060198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Leeuwen J, et al. (2020) Systematic analysis of bypass suppression of essential genes. Mol Syst Biol 16(9):e9828 PMID:32939983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang J, et al. (2019) Assessing predictions on fitness effects of missense variants in calmodulin. Hum Mutat 40(9):1463-1473 PMID:31283071
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Díaz-Mejía JJ, et al. (2018) Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics. Mol Syst Biol 14(5):e7985 PMID:29807908
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weinstein ZB, et al. (2018) Modeling the impact of drug interactions on therapeutic selectivity. Nat Commun 9(1):3452 PMID:30150706
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Celaj A, et al. (2017) Quantitative analysis of protein interaction network dynamics in yeast. Mol Syst Biol 13(7):934 PMID:28705884
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jo M, et al. (2017) Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target. Genome Res 27(9):1487-1500 PMID:28596290
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vigentini I, et al. (2017) CRISPR/Cas9 System as a Valuable Genome Editing Tool for Wine Yeasts with Application to Decrease Urea Production. Front Microbiol 8:2194 PMID:29163459
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang F, et al. (2017) Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genet 13(5):e1006779 PMID:28542158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shekhar-Guturja T, et al. (2016) Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat Chem Biol 12(10):867-75 PMID:27571477
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sun S, et al. (2016) An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res 26(5):670-80 PMID:26975778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vo TV, et al. (2016) A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human. Cell 164(1-2):310-323 PMID:26771498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhong Q, et al. (2016) An inter-species protein-protein interaction network across vast evolutionary distance. Mol Syst Biol 12(4):865 PMID:27107014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Leeuwen J, et al. (2016) Exploring genetic suppression interactions on a global scale. Science 354(6312) PMID:27811238
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cokol M, et al. (2014) Large-scale identification and analysis of suppressive drug interactions. Chem Biol 21(4):541-551 PMID:24704506
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Labunskyy VM, et al. (2014) The insertion Green Monster (iGM) method for expression of multiple exogenous genes in yeast. G3 (Bethesda) 4(7):1183-91 PMID:24776987
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pak TR and Roth FP (2013) ChromoZoom: a flexible, fluid, web-based genome browser. Bioinformatics 29(3):384-6 PMID:23220575
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng E, et al. (2012) Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae. Genetics 192(1):147-60 PMID:22673806
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suzuki Y, et al. (2012) The green monster process for the generation of yeast strains carrying multiple gene deletions. J Vis Exp e4072 PMID:23271437
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cokol M, et al. (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544 PMID:22068327
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smith AM, et al. (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19(10):1836-42 PMID:19622793
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mani R, et al. (2008) Defining genetic interaction. Proc Natl Acad Sci U S A 105(9):3461-6 PMID:18305163
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tian W, et al. (2008) Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol 9 Suppl 1(Suppl 1):S7 PMID:18613951
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bertin N, et al. (2007) Confirmation of organized modularity in the yeast interactome. PLoS Biol 5(6):e153 PMID:17564493
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Komili S and Roth FP (2007) Genetic interaction screens advance in reverse. Genes Dev 21(2):137-42 PMID:17234880
    • SGD Paper
    • DOI full text
    • PubMed
  • Komili S, et al. (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131(3):557-71 PMID:17981122
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • St Onge RP, et al. (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39(2):199-206 PMID:17206143
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Proft M, et al. (2005) Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot Cell 4(8):1343-52 PMID:16087739
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong SL and Roth FP (2005) Transcriptional compensation for gene loss plays a minor role in maintaining genetic robustness in Saccharomyces cerevisiae. Genetics 171(2):829-33 PMID:15998714
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Wong SL, et al. (2005) Discovering functional relationships: biochemistry versus genetics. Trends Genet 21(8):424-7 PMID:15982781
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang LV, et al. (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6 PMID:15982408
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Han JD, et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88-93 PMID:15190252
    • SGD Paper
    • DOI full text
    • PubMed
  • Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Wong SL, et al. (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci U S A 101(44):15682-7 PMID:15496468
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Berriz GF, et al. (2003) GoFish finds genes with combinations of Gene Ontology attributes. Bioinformatics 19(6):788-9 PMID:12691998
    • SGD Paper
    • DOI full text
    • PubMed
  • Berriz GF, et al. (2003) Characterizing gene sets with FuncAssociate. Bioinformatics 19(18):2502-4 PMID:14668247
    • SGD Paper
    • DOI full text
    • PubMed
  • King OD, et al. (2003) Predicting phenotype from patterns of annotation. Bioinformatics 19 Suppl 1:i183-9 PMID:12855456
    • SGD Paper
    • DOI full text
    • PubMed
  • King OD, et al. (2003) Predicting gene function from patterns of annotation. Genome Res 13(5):896-904 PMID:12695322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Damelin M, et al. (2002) The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9(3):563-73 PMID:11931764
    • SGD Paper
    • DOI full text
    • PubMed
  • Gibbons FD and Roth FP (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res 12(10):1574-81 PMID:12368250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roth FP, et al. (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939-45 PMID:9788350
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top