AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Richter K
  • References

Author: Richter K


References 43 references


No citations for this author.

Download References (.nbib)

  • Kovacs M, et al. (2021) Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells. Front Cell Dev Biol 9:774985 PMID:34869375
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geltinger F, et al. (2020) The transfer of specific mitochondrial lipids and proteins to lipid droplets contributes to proteostasis upon stress and aging in the eukaryotic model system Saccharomyces cerevisiae. Geroscience 42(1):19-38 PMID:31676965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rehn A, et al. (2020) A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nat Commun 11(1):1219 PMID:32139682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ho CT, et al. (2019) Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis. Nat Commun 10(1):4851 PMID:31649258
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sima S, et al. (2019) Genome-wide analysis of yeast expression data based on a priori generated co-regulation cliques. Microb Cell 6(3):160-176 PMID:30854393
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Streubel MK, et al. (2018) Behead and live long or the tale of cathepsin L. Yeast 35(2):237-249 PMID:29044689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Papsdorf K, et al. (2016) Construction and evaluation of yeast expression networks by database-guided predictions. Microb Cell 3(6):236-247 PMID:28357360
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zierer BK, et al. (2016) Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 23(11):1020-1028 PMID:27723736
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller SB, et al. (2015) Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34(6):778-97 PMID:25672362
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Papsdorf K, et al. (2015) Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects. BMC Genomics 16(1):662 PMID:26335097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Röhl A, et al. (2015) Hop/Sti1 phosphorylation inhibits its co-chaperone function. EMBO Rep 16(2):240-9 PMID:25504578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Röhl A, et al. (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:6655 PMID:25851214
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eckl JM, et al. (2014) Nematode Sgt1-homologue D1054.3 binds open and closed conformations of Hsp90 via distinct binding sites. Biochemistry 53(15):2505-14 PMID:24660900
    • SGD Paper
    • DOI full text
    • PubMed
  • Jahn M, et al. (2014) The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function. Proc Natl Acad Sci U S A 111(50):17881-6 PMID:25468961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haslbeck V, et al. (2013) Chaperone-interacting TPR proteins in Caenorhabditis elegans. J Mol Biol 425(16):2922-39 PMID:23727266
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaiser CJ, et al. (2013) A network of genes connects polyglutamine toxicity to ploidy control in yeast. Nat Commun 4:1571 PMID:23481379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li J, et al. (2013) Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20(3):326-31 PMID:23396352
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinnerthaler M, et al. (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8(10):e77791 PMID:24204967
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmid AB, et al. (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31(6):1506-17 PMID:22227520
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soroka J, et al. (2012) Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol Cell 45(4):517-28 PMID:22365831
    • SGD Paper
    • DOI full text
    • PubMed
  • Hagn F, et al. (2011) Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol 18(10):1086-93 PMID:21892170
    • SGD Paper
    • DOI full text
    • PubMed
  • Li J, et al. (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61-6 PMID:21170051
    • SGD Paper
    • DOI full text
    • PubMed
  • Retzlaff M, et al. (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37(3):344-54 PMID:20159554
    • SGD Paper
    • DOI full text
    • PubMed
  • Hainzl O, et al. (2009) The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284(34):22559-67 PMID:19553666
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hessling M, et al. (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16(3):287-93 PMID:19234467
    • SGD Paper
    • DOI full text
    • PubMed
  • Müller M, et al. (2009) Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization. RNA 15(11):2002-12 PMID:19710186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richter K, et al. (2008) Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem 283(26):17757-65 PMID:18400751
    • SGD Paper
    • DOI full text
    • PubMed
  • Wandinger SK, et al. (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473-7 PMID:18442971
    • SGD Paper
    • DOI full text
    • PubMed
  • Heuck A, et al. (2007) Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes. Proc Natl Acad Sci U S A 104(50):19778-83 PMID:18056806
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richter K, et al. (2006) Intrinsic inhibition of the Hsp90 ATPase activity. J Biol Chem 281(16):11301-11 PMID:16461354
    • SGD Paper
    • DOI full text
    • PubMed
  • Franzmann TM, et al. (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350(5):1083-93 PMID:15967461
    • SGD Paper
    • DOI full text
    • PubMed
  • Grimminger V, et al. (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem 279(9):7378-83 PMID:14668331
    • SGD Paper
    • DOI full text
    • PubMed
  • Hainzl O, et al. (2004) Cns1 is an activator of the Ssa1 ATPase activity. J Biol Chem 279(22):23267-73 PMID:15044454
    • SGD Paper
    • DOI full text
    • PubMed
  • Pachler K, et al. (2004) Functional interaction in establishment of ribosomal integrity between small subunit protein rpS6 and translational regulator rpL10/Grc5p. FEMS Yeast Res 5(3):271-80 PMID:15556089
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter K, et al. (2004) The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342(5):1403-13 PMID:15364569
    • SGD Paper
    • DOI full text
    • PubMed
  • Stromer T, et al. (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279(12):11222-8 PMID:14722093
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter K, et al. (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 278(12):10328-33 PMID:12525481
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter K, et al. (2002) N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle. J Biol Chem 277(47):44905-10 PMID:12235160
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter K, et al. (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276(36):33689-96 PMID:11441008
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayr C, et al. (2000) Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J Biol Chem 275(44):34140-6 PMID:10942767
    • SGD Paper
    • DOI full text
    • PubMed
  • Weikl T, et al. (2000) C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303(4):583-92 PMID:11054293
    • SGD Paper
    • DOI full text
    • PubMed
  • Schüller HJ, et al. (1995) DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: structural requirements as defined by saturation mutagenesis. FEBS Lett 370(1-2):149-52 PMID:7649294
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter K, et al. (1980) The effect of delta-aminolevulinate on catalase T-messenger RNA levels in delta-aminolevulinate synthase-defective mutants of Saccharomyces cerevisiae. J Biol Chem 255(17):8019-22 PMID:6997287
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top