Abramczyk D, et al. (2012) Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes. Eukaryot Cell 11(3):334-42 PMID:22210830
Campbell RN, et al. (2011) Isolation of compensatory inhibitor domain mutants to novel activation domain variants using the split-ubiquitin screen. Yeast 28(8):569-78 PMID:21732556
Leverentz MK, et al. (2009) Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner. J Biol Chem 284(36):24115-22 PMID:19574222
Sellick CA, et al. (2009) The effect of ligand binding on the galactokinase activity of yeast Gal1p and its ability to activate transcription. J Biol Chem 284(1):229-236 PMID:18957435
Campbell RN, et al. (2008) Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochem J 414(2):177-87 PMID:18687061
Sellick CA, et al. (2008) Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 269:111-50 PMID:18779058
Thoden JB, et al. (2008) The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem 283(44):30266-72 PMID:18701455
Wightman R, et al. (2008) Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot Cell 7(12):2061-8 PMID:18952899
Bundy JG, et al. (2007) Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Res 17(4):510-9 PMID:17339370
Thoden JB, et al. (2007) Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 282(3):1534-8 PMID:17121853
Leverentz MK and Reece RJ (2006) Phosphorylation of Zn(II)2Cys6 proteins: a cause or effect of transcriptional activation? Biochem Soc Trans 34(Pt 5):794-7 PMID:17052200
Sellick CA and Reece RJ (2006) Contribution of amino acid side chains to sugar binding specificity in a galactokinase, Gal1p, and a transcriptional inducer, Gal3p. J Biol Chem 281(25):17150-17155 PMID:16603548
Hartley A, et al. (2004) Substrate specificity and mechanism from the structure of Pyrococcus furiosus galactokinase. J Mol Biol 337(2):387-98 PMID:15003454
Darieva Z, et al. (2003) Cell cycle-regulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr Biol 13(19):1740-5 PMID:14521842
Sellick CA and Reece RJ (2003) Modulation of transcription factor function by an amino acid: activation of Put3p by proline. EMBO J 22(19):5147-53 PMID:14517252
Timson DJ and Reece RJ (2002) Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes. Biochimie 84(4):265-72 PMID:12106903
Timson DJ, et al. (2002) Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry. Biochem J 363(Pt 3):515-20 PMID:11964151
Platt A, et al. (2000) The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc Natl Acad Sci U S A 97(7):3154-9 PMID:10737789
Flynn PJ and Reece RJ (1999) Activation of transcription by metabolic intermediates of the pyrimidine biosynthetic pathway. Mol Cell Biol 19(1):882-8 PMID:9858611
Ansari AZ, et al. (1998) A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A 95(23):13543-8 PMID:9811836
Platt A and Reece RJ (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17(14):4086-91 PMID:9670023
Swaminathan K, et al. (1997) Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nat Struct Biol 4(9):751-9 PMID:9303004
des Etages SA, et al. (1996) Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142(4):1069-82 PMID:8846888