AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Patton-Vogt J
  • References

Author: Patton-Vogt J


References 27 references


No citations for this author.

Download References (.nbib)

  • King WR, et al. (2024) The glycerophosphocholine acyltransferase Gpc1 contributes to phosphatidylcholine biosynthesis, long-term viability, and embedded hyphal growth in Candida albicans. J Biol Chem 300(1):105543 PMID:38072057
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hrach VL, et al. (2023) The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 299(7):104884 PMID:37269946
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hrach VL, et al. (2022) The Acyltransferase Gpc1 is Both a Target and an Effector of the Unfolded Protein Response (UPR). FASEB J 36 Suppl 1.
    • SGD Paper
    • DOI full text
  • King WR, et al. (2022) Two Pathways Diverge: Glycerophosphocholine Impacts Both Phosphate and Lipid Metabolism in Candida albicans. FASEB J 36 Suppl 1.
    • SGD Paper
    • DOI full text
  • Robinson BP, et al. (2022) Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 114(1):3-31 PMID:34562280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patton-Vogt J and de Kroon AIPM (2020) Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids 1865(1):158462 PMID:31146038
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anaokar S, et al. (2019) The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 294(4):1189-1201 PMID:30514764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Głąb B, et al. (2016) Cloning of Glycerophosphocholine Acyltransferase (GPCAT) from Fungi and Plants: A NOVEL ENZYME IN PHOSPHATIDYLCHOLINE SYNTHESIS. J Biol Chem 291(48):25066-25076 PMID:27758859
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patton-Vogt J (2016)
    • SGD Paper
  • Ding J, et al. (2015) PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 99(20):8667-80 PMID:26051671
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ding J, et al. (2015) Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol Lett 362(3):1-7 PMID:25673654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Surlow BA, et al. (2014) Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation. J Biol Chem 289(45):31591-604 PMID:25258318
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ding J, et al. (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97(16):7405-16 PMID:23828602
    • SGD Paper
    • DOI full text
    • PubMed
  • Sun T, et al. (2012) Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of lipid-related extracellular metabolites in Saccharomyces cerevisiae. J Chromatogr B Analyt Technol Biomed Life Sci 897:1-9 PMID:22541168
    • SGD Paper
    • DOI full text
    • PubMed
  • Bishop AC, et al. (2011) Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. Eukaryot Cell 10(12):1618-27 PMID:21984707
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng L, et al. (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156(3):1131-48 PMID:21464471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bishop AC, et al. (2009) Neurofibromin homologs Ira1 and Ira2 affect glycerophosphoinositol production and transport in Saccharomyces cerevisiae. Eukaryot Cell 8(11):1808-11 PMID:19717739
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nunez LR, et al. (2008) Cell wall integrity MAPK pathway is essential for lipid homeostasis. J Biol Chem 283(49):34204-17 PMID:18842580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Simocková M, et al. (2008) Yeast Pgc1p (YPL206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. J Biol Chem 283(25):17107-15 PMID:18434318
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patton-Vogt J (2007) Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochim Biophys Acta 1771(3):337-42 PMID:16781190
    • SGD Paper
    • DOI full text
    • PubMed
  • Almaguer C, et al. (2006) Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Curr Genet 50(6):367-75 PMID:16924500
    • SGD Paper
    • DOI full text
    • PubMed
  • Boumann HA, et al. (2006) Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol Biol Cell 17(2):1006-17 PMID:16339082
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mariggiò S, et al. (2006) Molecular characterization of a glycerophosphoinositol transporter in mammalian cells. FEBS Lett 580(30):6789-96 PMID:17141226
    • SGD Paper
    • DOI full text
    • PubMed
  • Fisher E, et al. (2005) Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. J Biol Chem 280(43):36110-7 PMID:16141200
    • SGD Paper
    • DOI full text
    • PubMed
  • Almaguer C, et al. (2004) Glycerophosphoinositol, a novel phosphate source whose transport is regulated by multiple factors in Saccharomyces cerevisiae. J Biol Chem 279(30):31937-42 PMID:15145930
    • SGD Paper
    • DOI full text
    • PubMed
  • Almaguer C, et al. (2003) Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. Eukaryot Cell 2(4):729-36 PMID:12912892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shirra MK, et al. (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21(17):5710-22 PMID:11486011
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top