Vijayraghavan S, et al. (2023) A novel narnavirus is widespread in Saccharomyces cerevisiae and impacts multiple host phenotypes. G3 (Bethesda) 13(2) PMID:36560866
Vijayraghavan S, et al. (2023) RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (Bethesda) 13(10) PMID:37497616
Strope PK, et al. (2015) The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 25(5):762-74 PMID:25840857
Zhao Y, et al. (2014) Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination. G3 (Bethesda) 4(11):2259-69 PMID:25236733
Esberg A, et al. (2011) Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93. PLoS One 6(9):e25211 PMID:21966457
Muller LA and McCusker JH (2011) Nature and distribution of large sequence polymorphisms in Saccharomyces cerevisiae. FEMS Yeast Res 11(7):587-94 PMID:22093685
Muller LA, et al. (2011) Genome-wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis. Mol Ecol 20(19):4085-97 PMID:21880084
Kingsbury JM and McCusker JH (2010) Fungal homoserine kinase (thr1Delta) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation. Eukaryot Cell 9(5):729-37 PMID:20305003
Kingsbury JM and McCusker JH (2010) Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2{Delta}) mutants is influenced by the carbon source and rapamycin. Microbiology (Reading) 156(Pt 3):929-939 PMID:20019084
Argueso JL, et al. (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258-70 PMID:19812109
Muller LA and McCusker JH (2009) Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments. Mol Ecol 18(13):2779-86 PMID:19457175
Muller LA and McCusker JH (2009) A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):143-52 PMID:19054123
Wei W, et al. (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104(31):12825-30 PMID:17652520
Kingsbury JM, et al. (2006) Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo. Eukaryot Cell 5(5):816-24 PMID:16682459
Ito-Harashima S and McCusker JH (2004) Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast 21(1):53-61 PMID:14745782
Kingsbury JM, et al. (2004) Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 degrees C and in vivo. Microbiology (Reading) 150(Pt 5):1547-1558 PMID:15133116
Malkova A, et al. (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168(1):49-63 PMID:15454526
Vorachek-Warren MK and McCusker JH (2004) DsdA (D-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae. Yeast 21(2):163-71 PMID:14755641
Ito-Harashima S, et al. (2002) The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency. Genetics 161(4):1395-410 PMID:12196388
Yang Z, et al. (2002) Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology (Reading) 148(Pt 8):2617-2625 PMID:12177356
Cruz MC, et al. (2001) Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45(11):3162-70 PMID:11600372
Goldstein AL and McCusker JH (2001) Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 159(2):499-513 PMID:11606528
Goldstein AL and McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541-53 PMID:10514571
McCullough MJ, et al. (1998) Intergenic transcribed spacer PCR ribotyping for differentiation of Saccharomyces species and interspecific hybrids. J Clin Microbiol 36(4):1035-8 PMID:9542932
Lashkari DA, et al. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 94(24):13057-62 PMID:9371799
Na S, et al. (1995) MOP2 (SLA2) affects the abundance of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 270(12):6815-23 PMID:7896828
McCusker JH and Davis RW (1991) The use of proline as a nitrogen source causes hypersensitivity to, and allows more economical use of 5FOA in Saccharomyces cerevisiae. Yeast 7(6):607-8 PMID:1767588
McCusker JH, et al. (1991) Suppressor analysis of temperature-sensitive RNA polymerase I mutations in Saccharomyces cerevisiae: suppression of mutations in a zinc-binding motif by transposed mutant genes. Mol Cell Biol 11(2):746-53 PMID:1846671
McCusker JH and Haber JE (1990) Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs. Mol Cell Biol 10(6):2941-9 PMID:2188104
Ramirez JA, et al. (1989) ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 86(20):7866-70 PMID:2530577
McCusker JH and Haber JE (1988) crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants. Genetics 119(2):317-27 PMID:3294104
McCusker JH and Haber JE (1988) Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics 119(2):303-15 PMID:3294103
McCusker JH and Haber JE (1981) Evidence of Chromosomal Breaks near the Mating-Type Locus of SACCHAROMYCES CEREVISIAE That Accompany MATalpha xMATalpha Matings. Genetics 99(3-4):383-403 PMID:17249125
Haber JE, et al. (1980) Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell 22(1 Pt 1):277-89 PMID:6253081