AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Martegani E
  • References

Author: Martegani E


References 69 references


No citations for this author.

Download References (.nbib)

  • Bonomelli B, et al. (2023) Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 597(2):298-308 PMID:36527174
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2022) Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 92:110262 PMID:35093533
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni MD, et al. (2020) In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase. Apoptosis 25(9-10):686-696 PMID:32666259
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonomelli B, et al. (2020) Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 523(1):130-134 PMID:31837801
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni MD, et al. (2018) Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb Cell 5(7):344-356 PMID:29992130
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carmona-Gutierrez D, et al. (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5(1):4-31 PMID:29354647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colombo S, et al. (2017) Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochem Biophys Res Commun 487(3):594-599 PMID:28433631
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895787
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2015) The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 14(15):2429-38 PMID:26046481
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rigamonti M, et al. (2015) Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 57(2):57-68 PMID:25573187
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Monitoring yeast intracellular Ca2+ levels using an in vivo bioluminescence assay. Cold Spring Harb Protoc 2015(2):210-3 PMID:25646494
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Total cellular Ca2+ measurements in yeast using flame photometry. Cold Spring Harb Protoc 2015(2):214-6 PMID:25646495
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Measurement of calcium uptake in yeast using 45Ca. Cold Spring Harb Protoc 2015(2):217-8 PMID:25646496
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S and Martegani E (2014) Methods to study the Ras2 protein activation state and the subcellular localization of Ras-GTP in Saccharomyces cerevisiae. Methods Mol Biol 1120:391-405 PMID:24470038
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2014) Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie. Cell Signal 26(5):1147-54 PMID:24518043
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2014) Yeast as a model for Ras signalling. Methods Mol Biol 1120:359-90 PMID:24470037
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2013) Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2013:678473 PMID:24089630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Broggi S, et al. (2013) Nuclear Ras2-GTP controls invasive growth in Saccharomyces cerevisiae. PLoS One 8(11):e79274 PMID:24244466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Broggi S, et al. (2013) Live-cell imaging of endogenous Ras-GTP shows predominant Ras activation at the plasma membrane and in the nucleus in Saccharomyces cerevisiae. Int J Biochem Cell Biol 45(2):384-94 PMID:23127800
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2012) Localization of Ras signaling complex in budding yeast. Biochim Biophys Acta 1823(7):1208-16 PMID:22575457
    • SGD Paper
    • DOI full text
    • PubMed
  • Besozzi D, et al. (2012) The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J Bioinform Syst Biol 2012(1):10 PMID:22818197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bouillet LE, et al. (2012) The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 51(1):72-81 PMID:22153127
    • SGD Paper
    • DOI full text
    • PubMed
  • Pescini D, et al. (2012) Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnol Adv 30(1):99-107 PMID:21741466
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2011) PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast. FEBS Lett 585(24):3914-20 PMID:22036786
    • SGD Paper
    • DOI full text
    • PubMed
  • Groppi S, et al. (2011) Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49(6):376-86 PMID:21511333
    • SGD Paper
    • DOI full text
    • PubMed
  • Leadsham JE, et al. (2009) Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122(Pt 5):706-15 PMID:19208759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Busti S, et al. (2008) Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 53(3):153-62 PMID:18183397
    • SGD Paper
    • DOI full text
    • PubMed
  • Cazzaniga P, et al. (2008) Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J Biotechnol 133(3):377-85 PMID:18023904
    • SGD Paper
    • DOI full text
    • PubMed
  • Pereira MB, et al. (2008) Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8(4):622-30 PMID:18399987
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2008) The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization. Biochim Biophys Acta 1783(12):2363-74 PMID:18930081
    • SGD Paper
    • DOI full text
    • PubMed
  • Paiardi C, et al. (2007) The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. FEMS Yeast Res 7(8):1270-5 PMID:17727662
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2006) The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. Microbiology (Reading) 152(Pt 4):1231-1242 PMID:16549685
    • SGD Paper
    • DOI full text
    • PubMed
  • Trópia MJ, et al. (2006) Calcium signaling and sugar-induced activation of plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 343(4):1234-43 PMID:16581020
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Design and characterization of a new class of inhibitors of ras activation. Ann N Y Acad Sci 1030:52-61 PMID:15659780
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279(45):46715-22 PMID:15339905
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2004) Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Curr Genet 45(2):83-9 PMID:14618376
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2002) Phospholipase C is required for glucose-induced calcium influx in budding yeast. FEBS Lett 520(1-3):133-8 PMID:12044885
    • SGD Paper
    • DOI full text
    • PubMed
  • Bergsma JC, et al. (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(1,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359(Pt 3):517-23 PMID:11672425
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rudoni S, et al. (2001) Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochim Biophys Acta 1538(2-3):181-9 PMID:11336789
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2001) 3-Nitrocoumarin is an efficient inhibitor of budding yeast phospholipase-C. Cell Biochem Funct 19(4):229-35 PMID:11746203
    • SGD Paper
    • DOI full text
    • PubMed
  • Rudoni S, et al. (2000) The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription. Int J Biochem Cell Biol 32(2):215-24 PMID:10687955
    • SGD Paper
    • DOI full text
    • PubMed
  • Anghileri P, et al. (1999) Chromosome separation and exit from mitosis in budding yeast: dependence on growth revealed by cAMP-mediated inhibition. Exp Cell Res 250(2):510-23 PMID:10413604
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanoni M, et al. (1999) Characterization and properties of dominant-negative mutants of the ras-specific guanine nucleotide exchange factor CDC25(Mm). J Biol Chem 274(51):36656-62 PMID:10593969
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrera V, et al. (1998) Mutations at position 1122 in the catalytic domain of the mouse ras-specific guanine nucleotide exchange factor CDC25Mm originate both loss-of-function and gain-of-function proteins. FEBS Lett 440(3):291-6 PMID:9872389
    • SGD Paper
    • DOI full text
    • PubMed
  • Coccetti P, et al. (1998) The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochim Biophys Acta 1405(1-3):147-54 PMID:9784626
    • SGD Paper
    • DOI full text
    • PubMed
  • Martegani E, et al. (1997) Identification of gene encoding a putative RNA-helicase, homologous to SKI2, in chromosome VII of Saccharomyces cerevisiae. Yeast 13(4):391-7 PMID:9133744
    • SGD Paper
    • DOI full text
    • PubMed
  • Venturini M, et al. (1997) In Saccharomyces cerevisiae a short amino acid sequence facilitates excretion in the growth medium of periplasmic proteins. Mol Microbiol 23(5):997-1007 PMID:9076736
    • SGD Paper
    • DOI full text
    • PubMed
  • Coccetti P, et al. (1995) The minimal active domain of the mouse ras exchange factor CDC25Mm. Biochem Biophys Res Commun 206(1):253-9 PMID:7818528
    • SGD Paper
    • DOI full text
    • PubMed
  • Jacquet E, et al. (1994) Properties of the catalytic domain of CDC25, a Saccharomyces cerevisiae GDP/GTP exchange factor: comparison of its activity on full-length and C-terminal truncated RAS2 proteins. Biochem Biophys Res Commun 199(2):497-503 PMID:8135791
    • SGD Paper
    • DOI full text
    • PubMed
  • Compagno C, et al. (1993) Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnol Prog 9(6):594-9 PMID:7764348
    • SGD Paper
    • DOI full text
    • PubMed
  • Martegani E, et al. (1993) Alteration of cell population structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GAL4 gene. Yeast 9(6):575-82 PMID:8346673
    • SGD Paper
    • DOI full text
    • PubMed
  • Mauri I, et al. (1993) Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast. Mol Gen Genet 241(3-4):319-26 PMID:8246886
    • SGD Paper
    • DOI full text
    • PubMed
  • Jacquet E, et al. (1992) A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins. J Biol Chem 267(34):24181-3 PMID:1447167
    • SGD Paper
    • PubMed
  • Martegani E, et al. (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 11(6):2151-7 PMID:1376246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Porro D, et al. (1992) Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells. Biotechnol Bioeng 39(8):799-805 PMID:18601014
    • SGD Paper
    • DOI full text
    • PubMed
  • Compagno C, et al. (1991) The promoter of Saccharomyces cerevisiae FBA1 gene contains a single positive upstream regulatory element. FEBS Lett 293(1-2):97-100 PMID:1959676
    • SGD Paper
    • DOI full text
    • PubMed
  • Forlani N, et al. (1991) Posttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae. Biochim Biophys Acta 1089(1):47-53 PMID:2025647
    • SGD Paper
    • DOI full text
    • PubMed
  • Frascotti G, et al. (1991) The overexpression of the 3' terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools. Biochim Biophys Acta 1089(2):206-12 PMID:1647210
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodriguez F, et al. (1991) The sequence of 8.8 kb of yeast chromosome III cloned in lambda PM3270 contains an unusual long ORF (YCR601). Yeast 7(6):631-41 PMID:1837415
    • SGD Paper
    • DOI full text
    • PubMed
  • Frascotti G, et al. (1990) The glucose-induced polyphosphoinositides turnover in Saccharomyces cerevisiae is not dependent on the CDC25-RAS mediated signal transduction pathway. FEBS Lett 274(1-2):19-22 PMID:2174802
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanoni M, et al. (1990) Overexpression of the CDC25 gene, an upstream element of the RAS/adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product. Biochem Biophys Res Commun 172(1):61-9 PMID:2121145
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni MD, et al. (1989) Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae. Mol Cell Biol 9(6):2715-23 PMID:2548086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Compagno C, et al. (1989) Yeast 2 micron vectors replicate and undergo recombination in Torulaspora delbrueckii. Mol Microbiol 3(8):1003-10 PMID:2691836
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanoni M, et al. (1989) Secretion of Escherichia coli beta-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase-encoding STA2 gene. Biochem Biophys Res Commun 164(3):1331-8 PMID:2511842
    • SGD Paper
    • DOI full text
    • PubMed
  • Porro D, et al. (1988) Oscillations in continuous cultures of budding yeast: a segregated parameter analysis. Biotechnol Bioeng 32(4):411-7 PMID:18587737
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni M, et al. (1986) Molecular cloning and regulation of the expression of the MET2 gene of Saccharomyces cerevisiae. Gene 46(1):71-8 PMID:3542717
    • SGD Paper
    • DOI full text
    • PubMed
  • Martegani E, et al. (1986) Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae. EMBO J 5(9):2363-2369 PMID:16453707
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martegani E, et al. (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp Cell Res 162(2):544-8 PMID:3002825
    • SGD Paper
    • DOI full text
    • PubMed
  • Martegani E, et al. (1984) Macromolecular syntheses in the cell cycle mutant cdc25 of budding yeast. Eur J Biochem 144(2):205-10 PMID:6386464
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top