AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Liu N
  • References

Author: Liu N


References 34 references


No citations for this author.

Download References (.nbib)

  • Wu C, et al. (2025) Transcriptomics and proteomics analyses reveal the molecular mechanisms of yeast cells regulated by Phe-Cys against ethanol-oxidation cross-stress. Food Chem 464(Pt 2):141694 PMID:39442214
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu N, et al. (2024) TUFM in health and disease: exploring its multifaceted roles. Front Immunol 15:1424385 PMID:38868764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ma CR, et al. (2024) Activity reconstitution of Kre33 and Tan1 reveals a molecular ruler mechanism in eukaryotic tRNA acetylation. Nucleic Acids Res 52(9):5226-5240 PMID:38613394
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mei X, et al. (2024) De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae using metabolic pathway synthases from blueberry. Microb Cell Fact 23(1):228 PMID:39143478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2024) Construction of an amylolytic Saccharomyces cerevisiae strain with high copies of α-amylase and glucoamylase genes integration for bioethanol production from sweet potato residue. Front Microbiol 15:1419293 PMID:39171266
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu C, et al. (2024) Antioxidant Dipeptides Enhance Osmotic Stress Tolerance by Regulating the Yeast Cell Wall and Membrane. J Agric Food Chem 72(8):4339-4347 PMID:38351620
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen Y, et al. (2023) Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 63(33):12308-12323 PMID:35848108
    • SGD Paper
    • DOI full text
    • PubMed
  • Gao Y, et al. (2022) Improving glutathione production by engineered Pichia pastoris: strain construction and optimal precursor feeding. Appl Microbiol Biotechnol 106(5-6):1905-1917 PMID:35218387
    • SGD Paper
    • DOI full text
    • PubMed
  • Li B, et al. (2022) Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnol Biofuels Bioprod 15(1):28 PMID:35292082
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hu T, et al. (2020) Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng 60:87-96 PMID:32268192
    • SGD Paper
    • DOI full text
    • PubMed
  • Sun W, et al. (2020) Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metab Eng Commun 10:e00124 PMID:32346511
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang YX, et al. (2020) Metabolomic profiling reveals similar cytotoxic effects and protective functions of quercetin during deoxynivalenol- and 15-acetyl deoxynivalenol-induced cell apoptosis. Toxicol In Vitro 66:104838 PMID:32229167
    • SGD Paper
    • DOI full text
    • PubMed
  • He C, et al. (2019) Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1. Biochem J 476(13):1957-1973 PMID:31253666
    • SGD Paper
    • DOI full text
    • PubMed
  • Liao W, et al. (2019) MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ Sci Pollut Res Int 26(4):3697-3705 PMID:30535621
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu N, et al. (2019) Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Curr Genet 65(1):293-300 PMID:30167777
    • SGD Paper
    • DOI full text
    • PubMed
  • Abraham KJ, et al. (2016) Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res 44(18):8870-8884 PMID:27574117
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2016) GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass. Appl Microbiol Biotechnol 100(15):6671-6682 PMID:27003269
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu N, et al. (2015) Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J Microbiol Biotechnol 31(11):1781-92 PMID:26323948
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu Y, et al. (2015) The longevity of tor1Δ, sch9Δ, and ras2Δ mutants depends on actin dynamics in Saccharomyces cerevisiae. Cell Biosci 5:18 PMID:25901273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu N, et al. (2013) The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 58-59:42-52 PMID:23994322
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang L, et al. (2013) The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae. FEMS Yeast Res 13(2):200-18 PMID:23157175
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen MQ, et al. (2012) Arabidopsis NMD3 is required for nuclear export of 60S ribosomal subunits and affects secondary cell wall thickening. PLoS One 7(4):e35904 PMID:22558264
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu N, et al. (2011) SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol Cell Biol 31(20):4165-75 PMID:21859889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li N, et al. (2009) SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiol 151(3):1486-97 PMID:19734265
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu N, et al. (2009) Deletion of tandem repeats causes flocculation phenotype conversion from Flo1 to NewFlo in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 16(3-4):137-45 PMID:18057865
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang D, et al. (2008) Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett 30(11):2013-8 PMID:18581063
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang Y, et al. (2008) New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int J Food Microbiol 123(1-2):18-24 PMID:18192051
    • SGD Paper
    • DOI full text
    • PubMed
  • Cai PL, et al. (2007) [Effect of over-expression of sterol C-22 desaturase on ergosterol production in yeast strains]. Wei Sheng Wu Xue Bao 47(2):274-9 PMID:17552234
    • SGD Paper
    • PubMed
  • He X, et al. (2007) Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. Appl Microbiol Biotechnol 75(1):55-60 PMID:17225097
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu N, et al. (2007) Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Res 7(8):1362-70 PMID:17662052
    • SGD Paper
    • DOI full text
    • PubMed
  • Qu N, et al. (2006) [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 46(1):38-42 PMID:16579462
    • SGD Paper
    • PubMed
  • Liu Y, et al. (2005) Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 21(15):3279-85 PMID:15905281
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang JN, et al. (2005) [Genetically modified industrial brewing yeast with high-glutathione and low-diacetyl production]. Sheng Wu Gong Cheng Xue Bao 21(6):942-6 PMID:16468350
    • SGD Paper
    • PubMed
  • Mittl PR, et al. (2000) The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure. Proc Natl Acad Sci U S A 97(6):2562-6 PMID:10716989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top