AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Lima CD
  • References

Author: Lima CD


References 52 references


No citations for this author.

Download References (.nbib)

  • Lee HG, et al. (2023) SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proc Natl Acad Sci U S A 120(1):e2213703120 PMID:36574706
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Puno MR and Lima CD (2022) Methods to assess helicase and translocation activities of human nuclear RNA exosome and RNA adaptor complexes. Methods Enzymol 673:453-473 PMID:35965016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cappadocia L, et al. (2021) DNA asymmetry promotes SUMO modification of the single-stranded DNA-binding protein RPA. EMBO J 40(22):e103787 PMID:34585421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Das M, et al. (2021) Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc Natl Acad Sci U S A 118(14) PMID:33782132
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weick EM and Lima CD (2021) RNA helicases are hubs that orchestrate exosome-dependent 3'-5' decay. Curr Opin Struct Biol 67:86-94 PMID:33147539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weick EM, et al. (2020) Strategies for Generating RNA Exosome Complexes from Recombinant Expression Hosts. Methods Mol Biol 2062:417-425 PMID:31768988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zinder JC and Lima CD (2020) Reconstitution of S. cerevisiae RNA Exosome Complexes Using Recombinantly Expressed Proteins. Methods Mol Biol 2062:427-448 PMID:31768989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hann ZS, et al. (2019) Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7. Acta Crystallogr F Struct Biol Commun 75(Pt 8):552-560 PMID:31397327
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lau YK, et al. (2018) Discovery and engineering of enhanced SUMO protease enzymes. J Biol Chem 293(34):13224-13233 PMID:29976752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Puno MR and Lima CD (2018) Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc Natl Acad Sci U S A 115(24):E5506-E5515 PMID:29844170
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weick EM, et al. (2018) Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 173(7):1663-1677.e21 PMID:29906447
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wasmuth EV and Lima CD (2017) The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 45(2):846-860 PMID:27899565
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wasmuth EV, et al. (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. Elife 6 PMID:28742025
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Doamekpor SK, et al. (2016) Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Proc Natl Acad Sci U S A 113(29):E4151-60 PMID:27385828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Streich FC and Lima CD (2016) Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536(7616):304-8 PMID:27509863
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zinder JC, et al. (2016) Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Mol Cell 64(4):734-745 PMID:27818140
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wasmuth EV, et al. (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511(7510):435-9 PMID:25043052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lyumkis D, et al. (2013) Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Proc Natl Acad Sci U S A 110(5):1702-7 PMID:23319619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Armstrong AA, et al. (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483(7387):59-63 PMID:22382979
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wasmuth EV and Lima CD (2012) Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48(1):133-44 PMID:22902556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Januszyk K and Lima CD (2011) Structural components and architectures of RNA exosomes. Adv Exp Med Biol 702:9-28 PMID:21713674
    • SGD Paper
    • DOI full text
    • PubMed
  • Januszyk K, et al. (2011) Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA 17(8):1566-77 PMID:21705430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gu M, et al. (2010) Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Structure 18(2):216-27 PMID:20159466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Januszyk K and Lima CD (2010) Structural components and architectures of RNA exosomes. Adv Exp Med Biol 702:9-28 PMID:21618871
    • SGD Paper
    • PMC full text
    • PubMed
  • Olsen SK, et al. (2010) Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463(7283):906-12 PMID:20164921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suh MH, et al. (2010) A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 285(44):34027-38 PMID:20720002
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reverter D and Lima CD (2009) Preparation of SUMO proteases and kinetic analysis using endogenous substrates. Methods Mol Biol 497:225-39 PMID:19107421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yunus AA and Lima CD (2009) Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol Biol 497:167-86 PMID:19107417
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yunus AA and Lima CD (2009) Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol Cell 35(5):669-82 PMID:19748360
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghosh A, et al. (2008) The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol Cell 32(4):478-90 PMID:19026779
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Greimann JC and Lima CD (2008) Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays. Methods Enzymol 448:185-210 PMID:19111177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lima CD and Reverter D (2008) Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 283(46):32045-55 PMID:18799455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Capili AD and Lima CD (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 369(3):608-18 PMID:17466333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Q, et al. (2007) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 131(1):188-9
    • SGD Paper
  • Liu Q, et al. (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127(6):1223-37 PMID:17174896
    • SGD Paper
    • DOI full text
    • PubMed
  • Zheng S, et al. (2006) Mutational analysis of Encephalitozoon cuniculi mRNA cap (guanine-N7) methyltransferase, structure of the enzyme bound to sinefungin, and evidence that cap methyltransferase is the target of sinefungin's antifungal activity. J Biol Chem 281(47):35904-13 PMID:16971388
    • SGD Paper
    • DOI full text
    • PubMed
  • Gu M and Lima CD (2005) Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15(1):99-106 PMID:15718140
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD (2005) Inducing interactions with the CTD. Nat Struct Mol Biol 12(2):102-3 PMID:15702066
    • SGD Paper
    • DOI full text
    • PubMed
  • Yunus AA and Lima CD (2005) Purification and activity assays for Ubc9, the ubiquitin-conjugating enzyme for the small ubiquitin-like modifier SUMO. Methods Enzymol 398:74-87 PMID:16275321
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu SW, et al. (2004) Functional analysis of mRNA scavenger decapping enzymes. RNA 10(9):1412-22 PMID:15273322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fabrega C, et al. (2003) Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol Cell 11(6):1549-61 PMID:12820968
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD (2003) CUE'd up for Monoubiquitin. Cell 113(5):554-6 PMID:12787494
    • SGD Paper
    • DOI full text
    • PubMed
  • Bernier-Villamor V, et al. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108(3):345-56 PMID:11853669
    • SGD Paper
    • DOI full text
    • PubMed
  • Kniewel R, et al. (2002) Structural analysis of Saccharomyces cerevisiae myo-inositol phosphate synthase. J Struct Funct Genomics 2(3):129-34 PMID:12836703
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD (2002) Analysis of the E. coli NifS CsdB protein at 2.0 A reveals the structural basis for perselenide and persulfide intermediate formation. J Mol Biol 315(5):1199-208 PMID:11827487
    • SGD Paper
    • DOI full text
    • PubMed
  • Mossessova E and Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5(5):865-76 PMID:10882122
    • SGD Paper
    • DOI full text
    • PubMed
  • Feinberg H, et al. (1999) Conformational changes in E. coli DNA topoisomerase I. Nat Struct Biol 6(10):918-22 PMID:10504724
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD, et al. (1999) Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Cell 99(5):533-43 PMID:10589681
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD, et al. (1997) MAD analysis of FHIT, a putative human tumor suppressor from the HIT protein family. Structure 5(6):763-74 PMID:9261067
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD, et al. (1997) Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278(5336):286-90 PMID:9323207
    • SGD Paper
    • DOI full text
    • PubMed
  • Lima CD, et al. (1996) Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc Natl Acad Sci U S A 93(11):5357-62 PMID:8643579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lima CD, et al. (1994) Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367(6459):138-46 PMID:8114910
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top