AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Liebman SW
  • References

Author: Liebman SW


References 97 references


No citations for this author.

Download References (.nbib)

  • Park S, et al. (2025) An adenine model of inborn metabolism errors alters TDP-43 aggregation and reduces its toxicity in yeast revealing insights into protein misfolding diseases. Microb Cell 12:119-130 PMID:40421380
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park S, et al. (2024) Expression of Wild-Type and Mutant Human TDP-43 in Yeast Inhibits TOROID (TORC1 Organized in Inhibited Domain) Formation and Autophagy Proportionally to the Levels of TDP-43 Toxicity. Int J Mol Sci 25(11) PMID:38892445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2022) TDP-43 Toxicity in Yeast Is Associated with a Reduction in Autophagy, and Deletions of TIP41 and PBP1 Counteract These Effects. Viruses 14(10) PMID:36298819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2021) Tumor suppressor protein p53 expressed in yeast can remain diffuse, form a prion, or form unstable liquid-like droplets. iScience 24(1):102000 PMID:33490908
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park S, et al. (2019) Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies. PLoS Genet 15(8):e1008308 PMID:31390360
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2019) Respiration Enhances TDP-43 Toxicity, but TDP-43 Retains Some Toxicity in the Absence of Respiration. J Mol Biol 431(10):2050-2059 PMID:30905713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2018) Overexpression of a conserved HSP40 chaperone reduces toxicity of several neurodegenerative disease proteins. Prion 12(1):16-22 PMID:29308690
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Newby GA, et al. (2017) A Genetic Tool to Track Protein Aggregates and Control Prion Inheritance. Cell 171(4):966-979.e18 PMID:29056345
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2017) Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 13(5):e1006805 PMID:28531192
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SK, et al. (2016) Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs. Microb Cell 3(2):53-64 PMID:28357335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arslan F, et al. (2015) Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 11(1):e1004814 PMID:25568955
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Z, et al. (2014) Prion-promoted phosphorylation of heterologous amyloid is coupled with ubiquitin-proteasome system inhibition and toxicity. Mol Microbiol 93(5):1043-56 PMID:25039275
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL and Liebman SW (2013) The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions. Prion 7(4):294-300 PMID:23924684
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Haber JE (2013) Retrospective. Fred Sherman (1932-2013). Science 342(6162):1059 PMID:24288325
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharma J and Liebman SW (2013) Variant-specific prion interactions: Complicating factors. Cell Logist 3(1):e25698 PMID:24475372
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma J and Liebman SW (2013) Exploring the basis of [PIN(+)] variant differences in [PSI(+)] induction. J Mol Biol 425(17):3046-59 PMID:23770111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Z, et al. (2013) Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability. PLoS Genet 9(1):e1003236 PMID:23358669
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Chernoff YO (2012) Prions in yeast. Genetics 191(4):1041-72 PMID:22879407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mathur V, et al. (2012) Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 32(1):139-53 PMID:22037764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma J and Liebman SW (2012) [PSI(+) ] prion variant establishment in yeast. Mol Microbiol 86(4):866-81 PMID:22998111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2011) Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 43(2):242-52 PMID:21777813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hong JY, et al. (2011) A new colour assay for [URE3] prion in a genetic background used to score for the [PSI⁺] prion. Yeast 28(7):555-60 PMID:21590810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manogaran AL, et al. (2011) Prion formation and polyglutamine aggregation are controlled by two classes of genes. PLoS Genet 7(5):e1001386 PMID:21625618
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manogaran AL, et al. (2010) Most, but not all, yeast strains in the deletion library contain the [PIN(+)] prion. Yeast 27(3):159-66 PMID:20014044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mathur V, et al. (2010) Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast. Mol Biol Cell 21(9):1449-61 PMID:20219972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mathur V, et al. (2009) Ssa1 overexpression and [PIN(+)] variants cure [PSI(+)] by dilution of aggregates. J Mol Biol 390(2):155-67 PMID:19422835
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patel BK, et al. (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11(3):344-9 PMID:19219034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vishveshwara N and Liebman SW (2009) Heterologous cross-seeding mimics cross-species prion conversion in a yeast model. BMC Biol 7:26 PMID:19470166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vishveshwara N, et al. (2009) Sequestration of essential proteins causes prion associated toxicity in yeast. Mol Microbiol 73(6):1101-14 PMID:19682262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bagriantsev SN, et al. (2008) Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell 19(6):2433-43 PMID:18353968
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL and Liebman SW (2007) Prion-prion interactions. Prion 1(3):161-9 PMID:19164893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patel BK and Liebman SW (2007) "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol 365(3):773-82 PMID:17097676
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vitrenko YA, et al. (2007) Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP. Curr Genet 51(5):309-19 PMID:17415568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vitrenko YA, et al. (2007) Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem 282(3):1779-87 PMID:17121829
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW, et al. (2006) Biochemical and genetic methods for characterization of [PIN+] prions in yeast. Methods 39(1):23-34 PMID:16793281
    • SGD Paper
    • DOI full text
    • PubMed
  • Manogaran AL, et al. (2006) An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in Saccharomyces cerevisiae. Yeast 23(2):141-7 PMID:16491470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bagriantsev S and Liebman SW (2004) Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J Biol Chem 279(49):51042-8 PMID:15465809
    • SGD Paper
    • DOI full text
    • PubMed
  • Bradley ME and Liebman SW (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol 51(6):1649-59 PMID:15009892
    • SGD Paper
    • DOI full text
    • PubMed
  • Derkatch IL, et al. (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 101(35):12934-9 PMID:15326312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bradley ME and Liebman SW (2003) Destabilizing interactions among [PSI(+)] and [PIN(+)] yeast prion variants. Genetics 165(4):1675-85 PMID:14704158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bradley ME, et al. (2003) Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45. Yeast 20(7):625-32 PMID:12734800
    • SGD Paper
    • DOI full text
    • PubMed
  • Bradley ME, et al. (2002) Interactions among prions and prion "strains" in yeast. Proc Natl Acad Sci U S A 99 Suppl 4(Suppl 4):16392-9 PMID:12149514
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW (2002) Progress toward an ultimate proof of the prion hypothesis. Proc Natl Acad Sci U S A 99(14):9098-100 PMID:12093925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106(2):171-82 PMID:11511345
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW (2001) Prions. The shape of a species barrier. Nature 410(6825):161-2 PMID:11258377
    • SGD Paper
    • DOI full text
    • PubMed
  • Velichutina IV, et al. (2001) Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol 305(4):715-27 PMID:11162087
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2001) The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI(+)] and [PIN(+)]. Mol Microbiol 39(1):37-46 PMID:11123686
    • SGD Paper
    • DOI full text
    • PubMed
  • Derkatch IL, et al. (2000) Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J 19(9):1942-52 PMID:10790361
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dresios J, et al. (2000) Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. Biochemistry 39(24):7236-44 PMID:10852723
    • SGD Paper
    • DOI full text
    • PubMed
  • Freiberg G, et al. (2000) Characterization of novel rad6/ubc2 ubiquitin-conjugating enzyme mutants in yeast. Curr Genet 37(4):221-33 PMID:10803884
    • SGD Paper
    • DOI full text
    • PubMed
  • Velichutina IV, et al. (2000) Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 6(8):1174-84 PMID:10943896
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burck CL, et al. (1999) Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift. RNA 5(11):1451-7 PMID:10580473
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1999) The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr Genet 35(2):59-67 PMID:10079323
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang H, et al. (1999) Host genes that affect the target-site distribution of the yeast retrotransposon Ty1. Genetics 151(4):1393-407 PMID:10101165
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Derkatch IL (1999) The yeast [PSI+] prion: making sense of nonsense. J Biol Chem 274(3):1181-4 PMID:9880481
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (1999) The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 18(5):1182-91 PMID:10064585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1998) Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc Natl Acad Sci U S A 95(5):2400-5 PMID:9482897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qian Z, et al. (1998) Yeast Ty1 retrotransposition is stimulated by a synergistic interaction between mutations in chromatin assembly factor I and histone regulatory proteins. Mol Cell Biol 18(8):4783-92 PMID:9671488
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147(2):507-19 PMID:9335589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang H, et al. (1997) The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6693-9 PMID:9343433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nierras CR, et al. (1997) Does Saccharomyces need an organized nucleolus? Chromosoma 105(7-8):444-51 PMID:9211972
    • SGD Paper
    • PubMed
  • Chernoff YO, et al. (1996) The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc Natl Acad Sci U S A 93(6):2517-22 PMID:8637906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144(4):1375-86 PMID:8978027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu R and Liebman SW (1996) A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2(3):254-63 PMID:8608449
    • SGD Paper
    • PMC full text
    • PubMed
  • Anthony RA and Liebman SW (1995) Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae. Genetics 140(4):1247-58 PMID:7498767
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880-4 PMID:7754373
    • SGD Paper
    • DOI full text
    • PubMed
  • Lindquist S, et al. (1995) The role of Hsp104 in stress tolerance and [PSI+] propagation in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 60:451-60 PMID:8824419
    • SGD Paper
    • DOI full text
    • PubMed
  • Vincent A, et al. (1994) The yeast translational allosuppressor, SAL6: a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension. Genetics 138(3):597-608 PMID:7851758
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alksne LE, et al. (1993) An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci U S A 90(20):9538-41 PMID:8415737
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Newnam G (1993) A ubiquitin-conjugating enzyme, RAD6, affects the distribution of Ty1 retrotransposon integration positions. Genetics 133(3):499-508 PMID:8384143
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sutton PR and Liebman SW (1992) Rearrangements occurring adjacent to a single Ty1 yeast retrotransposon in the presence and absence of full-length Ty1 transcription. Genetics 131(4):833-50 PMID:1325387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vincent A and Liebman SW (1992) The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 132(2):375-86 PMID:1427034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • All-Robyn JA, et al. (1990) Isolation of omnipotent suppressors in an [eta+] yeast strain. Genetics 124(3):505-14 PMID:2311916
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • All-Robyn JA, et al. (1990) Sequence and functional similarity between a yeast ribosomal protein and the Escherichia coli S5 ram protein. Mol Cell Biol 10(12):6544-53 PMID:2247072
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Picologlou S, et al. (1990) Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol Cell Biol 10(3):1017-22 PMID:2154679
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song JM and Liebman SW (1989) Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2. Curr Genet 16(5-6):315-21 PMID:2692849
    • SGD Paper
    • DOI full text
    • PubMed
  • Wilke CM, et al. (1989) Analysis of yeast retrotransposon Ty insertions at the CAN1 locus. Genetics 123(4):655-65 PMID:2558956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Picologlou S, et al. (1988) The same configuration of Ty elements promotes different types and frequencies of rearrangements in different yeast strains. Mol Gen Genet 211(2):272-81 PMID:2832703
    • SGD Paper
    • DOI full text
    • PubMed
  • Song JM and Liebman SW (1987) Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae. Genetics 115(3):451-60 PMID:3552876
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Downs KM, et al. (1985) Deletions extending from a single Ty1 element in Saccharomyces cerevisiae. Mol Cell Biol 5(12):3451-7 PMID:3018520
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Picologlou S and Liebman SW (1985) The DEL1 mutator gene in Saccharomyces cerevisiae does not act in trans. Curr Genet 9(4):259-62 PMID:2836088
    • SGD Paper
    • DOI full text
    • PubMed
  • Song JM and Liebman SW (1985) Interaction of UAG suppressors and omnipotent suppressors in Saccharomyces cerevisiae. J Bacteriol 161(2):778-80 PMID:3881411
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and All-Robyn JA (1984) A non-Mendelian factor, [eta(+)], causes lethality of yeast omnipotent-suppressor strains. Curr Genet 8(8):567-73 PMID:24177995
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW, et al. (1984) Yeast amber suppressors corresponding to tRNA3Leu genes. J Mol Biol 178(2):209-26 PMID:6387150
    • SGD Paper
    • DOI full text
    • PubMed
  • Downs KM, et al. (1983) Analysis of the effect of radiation repair mutations on the DEL1 mutator region of Saccharomyces cerevisiae. Curr Genet 7(1):57-61 PMID:24173119
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW and Cavenagh MM (1981) 4OS ribosomal protein from a Saccharomyces cerevisiae antisuppressor mutant exhibiting a unique 2D gel pattern. Curr Genet 3(1):27-9 PMID:24189949
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW and Cavenagh M (1980) An antisuppressor that acts on omnipotent suppressors in yeast. Genetics 95(1):49-61 PMID:7000618
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Downs KM (1980) The RAD52 gene is not required for the function of the DEL1 mutator gene in Saccharomyces cerevisiae. Mol Gen Genet 179(3):703-5 PMID:7003305
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW, et al. (1980) Isolation and properties of an antisuppressor in Saccharomyces cerevisiae specific for an omnipotent suppressor. J Bacteriol 143(3):1527-9 PMID:6997279
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Sherman F (1979) Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J Bacteriol 139(3):1068-71 PMID:225301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW, et al. (1979) A mutator affecting the region of the iso-1-cytochrome c gene in yeast. Genetics 92(3):783-802 PMID:231539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reed CR and Liebman SW (1979) New amber suppressors in Saccharomyces cerevisiae Genetics 91:s102
    • SGD Paper
  • Liebman SW, et al. (1977) Leucine insertion caused by a yeast amber suppressor. J Mol Biol 109(1):13-22 PMID:190408
    • SGD Paper
    • DOI full text
    • PubMed
  • Liebman SW and Sherman F (1976) Inhibition of growth by amber suppressors in yeast. Genetics 82(2):233-49 PMID:177332
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW, et al. (1976) Isolation and characterization of amber suppressors in yeast. Genetics 82(2):251-72 PMID:177333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW, et al. (1975) Serine substitutions caused by an ochre suppressor in yeast. J Mol Biol 94(4):595-610 PMID:171412
    • SGD Paper
    • DOI full text
    • PubMed
  • Sherman F, et al. (1975) A deletion map of cyc1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast. Genetics 81(1):51-73 PMID:173620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top