AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Krejci L
  • References

Author: Krejci L


References 52 references


No citations for this author.

Download References (.nbib)

  • Aithal R, et al. (2024) Physical interaction with Spo11 mediates the localisation of Mre11 to chromatin in meiosis and promotes its nuclease activity. Nucleic Acids Res 52(8):4328-4343 PMID:38407383
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carreira R, et al. (2024) Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors. Nucleic Acids Res 52(12):7012-7030 PMID:38832625
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marini V, et al. (2023) MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. BMC Biol 21(1):110 PMID:37194054
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Altmannova V, et al. (2022) The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 25(11):105439 PMID:36388968
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Altmannova V and Krejci L (2021) In Vitro Characterization of Sumoylation of HR Proteins. Methods Mol Biol 2153:483-502 PMID:32840800
    • SGD Paper
    • DOI full text
    • PubMed
  • Ranjha L, et al. (2019) Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2. Commun Biol 2:174 PMID:31098407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sebesta M, et al. (2017) Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 45(1):215-230 PMID:27694623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shemesh K, et al. (2017) A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance. Nucleic Acids Res 45(6):3189-3203 PMID:28108661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sisakova A, et al. (2017) Role of PCNA and RFC in promoting Mus81-complex activity. BMC Biol 15(1):90 PMID:28969641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vasianovich Y, et al. (2017) Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci. EMBO J 36(2):213-231 PMID:27932447
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kolesar P, et al. (2016) Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 291(14):7594-607 PMID:26861880
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Silva S, et al. (2016) SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 42:11-25 PMID:27130983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Silva S, et al. (2016) Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes Dev 30(6):700-17 PMID:26966248
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bakkaiova J, et al. (2015) Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 36(1):e00288 PMID:26647378
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bologna S, et al. (2015) Sumoylation regulates EXO1 stability and processing of DNA damage. Cell Cycle 14(15):2439-50 PMID:26083678
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chavdarova M, et al. (2015) Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res 43(7):3626-42 PMID:25765656
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kliszczak M, et al. (2015) Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 6(38):40464-79 PMID:26588054
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sarangi P, et al. (2015) Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet 11(1):e1004899 PMID:25569253
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sebesta M and Krejci L (2015) Phosphorylation of Elg1 regulates its activity. Cell Cycle 14(19):3009-10 PMID:26291034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Urulangodi M, et al. (2015) Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 29(19):2067-80 PMID:26443850
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burkovics P, et al. (2014) Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 42(3):1711-20 PMID:24198246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sarangi P, et al. (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res 42(10):6393-404 PMID:24753409
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sarangi P, et al. (2014) A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep 9(1):143-152 PMID:25263559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burgess RC, et al. (2013) The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination. PLoS One 8(12):e82630 PMID:24376557
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burkovics P, et al. (2013) Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 32(5):742-55 PMID:23395907
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vigasova D, et al. (2013) Lif1 SUMOylation and its role in non-homologous end-joining. Nucleic Acids Res 41(10):5341-53 PMID:23571759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kolesar P, et al. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40(16):7831-43 PMID:22705796
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krejci L, et al. (2012) Homologous recombination and its regulation. Nucleic Acids Res 40(13):5795-818 PMID:22467216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marini V and Krejci L (2012) Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst) 11(10):789-98 PMID:22921573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Altmannova V, et al. (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38(14):4708-21 PMID:20371517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marini V and Krejci L (2010) Srs2: the "Odd-Job Man" in DNA repair. DNA Repair (Amst) 9(3):268-75 PMID:20096651
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saponaro M, et al. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6(2):e1000858 PMID:20195513
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Antony E, et al. (2009) Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35(1):105-15 PMID:19595720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burgess RC, et al. (2009) Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J Cell Biol 185(6):969-81 PMID:19506039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colavito S, et al. (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 37(20):6754-64 PMID:19745052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matulova P, et al. (2009) Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 284(12):7733-45 PMID:19129197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash R, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23(1):67-79 PMID:19136626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seong C, et al. (2009) Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J Biol Chem 284(36):24363-71 PMID:19605344
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plate I, et al. (2008) Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 283(43):29077-85 PMID:18703507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seong C, et al. (2008) Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52. J Biol Chem 283(18):12166-74 PMID:18310075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen L, et al. (2005) Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280(4):2620-7 PMID:15546877
    • SGD Paper
    • DOI full text
    • PubMed
  • Papouli E, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19(1):123-33 PMID:15989970
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash R, et al. (2005) Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase. J Biol Chem 280(9):7854-60 PMID:15634678
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J Biol Chem 279(22):23193-9 PMID:15047689
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 74:159-201 PMID:14510076
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423(6937):305-9 PMID:12748644
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278(44):42729-32 PMID:12912992
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Komen S, et al. (2003) ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2. J Biol Chem 278(45):44331-7 PMID:12966095
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L and Sung P (2002) Of forks and ends. Trends Biochem Sci 27(5):225-6 PMID:12076528
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2002) Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem 277(42):40132-41 PMID:12171935
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol 21(3):966-76 PMID:11154282
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dunø M, et al. (2000) Genetic analysis of the Saccharomyces cerevisiae Sgs1 helicase defines an essential function for the Sgs1-Top3 complex in the absence of SRS2 or TOP1. Mol Gen Genet 264(1-2):89-97 PMID:11016837
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top