Aithal R, et al. (2024) Physical interaction with Spo11 mediates the localisation of Mre11 to chromatin in meiosis and promotes its nuclease activity. Nucleic Acids Res 52(8):4328-4343 PMID:38407383
Carreira R, et al. (2024) Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors. Nucleic Acids Res 52(12):7012-7030 PMID:38832625
Altmannova V, et al. (2022) The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 25(11):105439 PMID:36388968
Shemesh K, et al. (2017) A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance. Nucleic Acids Res 45(6):3189-3203 PMID:28108661
Vasianovich Y, et al. (2017) Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci. EMBO J 36(2):213-231 PMID:27932447
Kolesar P, et al. (2016) Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 291(14):7594-607 PMID:26861880
Silva S, et al. (2016) SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 42:11-25 PMID:27130983
Bakkaiova J, et al. (2015) Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 36(1):e00288 PMID:26647378
Kliszczak M, et al. (2015) Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 6(38):40464-79 PMID:26588054
Sarangi P, et al. (2015) Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet 11(1):e1004899 PMID:25569253
Urulangodi M, et al. (2015) Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 29(19):2067-80 PMID:26443850
Sarangi P, et al. (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res 42(10):6393-404 PMID:24753409
Sarangi P, et al. (2014) A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep 9(1):143-152 PMID:25263559
Burgess RC, et al. (2013) The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination. PLoS One 8(12):e82630 PMID:24376557
Kolesar P, et al. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40(16):7831-43 PMID:22705796
Saponaro M, et al. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6(2):e1000858 PMID:20195513
Antony E, et al. (2009) Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35(1):105-15 PMID:19595720
Burgess RC, et al. (2009) Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J Cell Biol 185(6):969-81 PMID:19506039
Colavito S, et al. (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 37(20):6754-64 PMID:19745052
Matulova P, et al. (2009) Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 284(12):7733-45 PMID:19129197
Prakash R, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23(1):67-79 PMID:19136626
Seong C, et al. (2009) Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J Biol Chem 284(36):24363-71 PMID:19605344
Plate I, et al. (2008) Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 283(43):29077-85 PMID:18703507
Seong C, et al. (2008) Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52. J Biol Chem 283(18):12166-74 PMID:18310075
Chen L, et al. (2005) Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280(4):2620-7 PMID:15546877
Papouli E, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19(1):123-33 PMID:15989970
Krejci L, et al. (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J Biol Chem 279(22):23193-9 PMID:15047689
Krejci L, et al. (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 74:159-201 PMID:14510076
Van Komen S, et al. (2003) ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2. J Biol Chem 278(45):44331-7 PMID:12966095
Krejci L, et al. (2002) Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem 277(42):40132-41 PMID:12171935
Krejci L, et al. (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol 21(3):966-76 PMID:11154282
Dunø M, et al. (2000) Genetic analysis of the Saccharomyces cerevisiae Sgs1 helicase defines an essential function for the Sgs1-Top3 complex in the absence of SRS2 or TOP1. Mol Gen Genet 264(1-2):89-97 PMID:11016837