Sharma S, et al. (2018) A single N1-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sci Rep 8(1):11904 PMID:30093689
Heuer A, et al. (2017) Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol 24(5):453-460 PMID:28368393
Yang J, et al. (2017) Correction: Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 12(3):e0173940 PMID:28278232
Meyer B, et al. (2016) Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 44(9):4304-16 PMID:27084949
Yang J, et al. (2016) Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 11(12):e0168873 PMID:28033325
van Rossum HM, et al. (2016) Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895788
Müller M, et al. (2015) Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 10(7):1215-25 PMID:25704822
Sharma S, et al. (2015) Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 43(4):2242-58 PMID:25653167
Sharma S, et al. (2014) Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 42(5):3246-60 PMID:24335083
Wurm JP, et al. (2014) Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Biomol NMR Assign 8(2):345-8 PMID:23921755
Peifer C, et al. (2013) Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res 41(2):1151-63 PMID:23180764
Sharma S, et al. (2013) Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 41(10):5428-43 PMID:23558746
Nijkamp JF, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36 PMID:22448915
Romagnoli G, et al. (2012) Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78(21):7538-48 PMID:22904058
Meyer B, et al. (2011) The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res 39(4):1526-37 PMID:20972225
Daran-Lapujade P, et al. (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789-92 PMID:19519766
Kötter P, et al. (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37(18):e120 PMID:19592423
Etschmann MM, et al. (2008) Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Appl Microbiol Biotechnol 80(4):579-87 PMID:18597084
Taylor AB, et al. (2008) The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res 36(5):1542-54 PMID:18208838
Buchhaupt M, et al. (2007) Mutations in the nucleolar proteins Tma23 and Nop6 suppress the malfunction of the Nep1 protein. FEMS Yeast Res 7(6):771-81 PMID:17425675
Buchhaupt M, et al. (2006) Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 276(3):273-84 PMID:16721597
Andrade RP, et al. (2005) Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332(1):254-62 PMID:15896325
Vuralhan Z, et al. (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276-84 PMID:15933030
Moreira dos Santos M, et al. (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6(4):352-63 PMID:15491864
Raghevendran V, et al. (2004) Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21(9):769-79 PMID:15282800
Daran-Lapujade P, et al. (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4(3):259-69 PMID:14654430
Moreira dos Santos M, et al. (2003) Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4(1):59-68 PMID:14554197
Eschrich D, et al. (2002) Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr Genet 40(5):326-38 PMID:11935223
Overkamp KM, et al. (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68(6):2814-21 PMID:12039737
Overkamp KM, et al. (2002) Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19(6):509-20 PMID:11921099
Stückrath I, et al. (2002) Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation. Biotechnol Bioeng 77(1):61-72 PMID:11745174
Bakker BM, et al. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15-37 PMID:11152939
Van Hoek P, et al. (2001) Human acylphosphatase cannot replace phosphoglycerate kinase in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 80(1):11-7 PMID:11761363
Bakker BM, et al. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730-7 PMID:10940011
Brachat A, et al. (2000) Analysis of deletion phenotypes and GFP fusions of 21 novel Saccharomyces cerevisiae open reading frames. Yeast 16(3):241-53 PMID:10649453
Luttik MA, et al. (2000) The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182(24):7007-13 PMID:11092862
Overkamp KM, et al. (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182(10):2823-30 PMID:10781551
Entian KD, et al. (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262(4-5):683-702 PMID:10628851
Flikweert MT, et al. (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66(1):42-50 PMID:10556793
Bojunga N, et al. (1998) The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol Gen Genet 260(5):453-61 PMID:9894915
Luttik MA, et al. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273(38):24529-34 PMID:9733747
de Jong-Gubbels P, et al. (1998) Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie Van Leeuwenhoek 74(4):253-63 PMID:10081585
Juhnke H, et al. (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252(4):456-64 PMID:8879247
Kötter P and Entian KD (1995) Cloning and analysis of the nuclear gene MRP-S9 encoding mitochondrial ribosomal protein S9 of Saccharomyces cerevisiae. Curr Genet 28(1):26-31 PMID:8536310
Proft M, et al. (1995) CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J 14(24):6116-26 PMID:8557031