AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Kötter P
  • References

Author: Kötter P


References 58 references


No citations for this author.

Download References (.nbib)

  • Pereira F, et al. (2021) Model-guided development of an evolutionarily stable yeast chassis. Mol Syst Biol 17(7):e10253 PMID:34292675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fischer M, et al. (2020) Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). Sci Rep 10(1):895 PMID:31964902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2018) A single N1-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sci Rep 8(1):11904 PMID:30093689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heuer A, et al. (2017) Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol 24(5):453-460 PMID:28368393
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharma S, et al. (2017) Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet 13(5):e1006804 PMID:28542199
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2017) Correction: Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 12(3):e0173940 PMID:28278232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer B, et al. (2016) Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 44(9):4304-16 PMID:27084949
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2016) Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 11(12):e0168873 PMID:28033325
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Rossum HM, et al. (2016) Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895788
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller M, et al. (2015) Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 10(7):1215-25 PMID:25704822
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharma S, et al. (2015) Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 43(4):2242-58 PMID:25653167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2015) Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 43(4):2342-52 PMID:25653162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2014) Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 42(5):3246-60 PMID:24335083
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wurm JP, et al. (2014) Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Biomol NMR Assign 8(2):345-8 PMID:23921755
    • SGD Paper
    • DOI full text
    • PubMed
  • Peifer C, et al. (2013) Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res 41(2):1151-63 PMID:23180764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2013) Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 41(10):5428-43 PMID:23558746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2013) Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res 41(19):9062-76 PMID:23913415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nijkamp JF, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36 PMID:22448915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Romagnoli G, et al. (2012) Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78(21):7538-48 PMID:22904058
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schilling V, et al. (2012) Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Yeast 29(5):167-83 PMID:22588997
    • SGD Paper
    • DOI full text
    • PubMed
  • Suess B, et al. (2012) Aptamer-regulated expression of essential genes in yeast. Methods Mol Biol 824:381-91 PMID:22160910
    • SGD Paper
    • DOI full text
    • PubMed
  • Meyer B, et al. (2011) The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res 39(4):1526-37 PMID:20972225
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daran-Lapujade P, et al. (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789-92 PMID:19519766
    • SGD Paper
    • DOI full text
    • PubMed
  • Kötter P, et al. (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37(18):e120 PMID:19592423
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Etschmann MM, et al. (2008) Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Appl Microbiol Biotechnol 80(4):579-87 PMID:18597084
    • SGD Paper
    • DOI full text
    • PubMed
  • Taylor AB, et al. (2008) The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res 36(5):1542-54 PMID:18208838
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchhaupt M, et al. (2007) Mutations in the nucleolar proteins Tma23 and Nop6 suppress the malfunction of the Nep1 protein. FEMS Yeast Res 7(6):771-81 PMID:17425675
    • SGD Paper
    • DOI full text
    • PubMed
  • Buchhaupt M, et al. (2006) Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 276(3):273-84 PMID:16721597
    • SGD Paper
    • DOI full text
    • PubMed
  • Ozimek P, et al. (2006) Hansenula polymorpha and Saccharomyces cerevisiae Pex5p's recognize different, independent peroxisomal targeting signals in alcohol oxidase. FEBS Lett 580(1):46-50 PMID:16359672
    • SGD Paper
    • DOI full text
    • PubMed
  • Andrade RP, et al. (2005) Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332(1):254-62 PMID:15896325
    • SGD Paper
    • DOI full text
    • PubMed
  • Vuralhan Z, et al. (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276-84 PMID:15933030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreira dos Santos M, et al. (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6(4):352-63 PMID:15491864
    • SGD Paper
    • DOI full text
    • PubMed
  • Raghevendran V, et al. (2004) Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21(9):769-79 PMID:15282800
    • SGD Paper
    • DOI full text
    • PubMed
  • Soares-Silva I, et al. (2004) The disruption of JEN1 from Candida albicans impairs the transport of lactate. Mol Membr Biol 21(6):403-11 PMID:15764370
    • SGD Paper
    • DOI full text
    • PubMed
  • Daran-Lapujade P, et al. (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4(3):259-69 PMID:14654430
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreira dos Santos M, et al. (2003) Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4(1):59-68 PMID:14554197
    • SGD Paper
    • DOI full text
    • PubMed
  • Eschrich D, et al. (2002) Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr Genet 40(5):326-38 PMID:11935223
    • SGD Paper
    • DOI full text
    • PubMed
  • Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Overkamp KM, et al. (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68(6):2814-21 PMID:12039737
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Overkamp KM, et al. (2002) Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19(6):509-20 PMID:11921099
    • SGD Paper
    • DOI full text
    • PubMed
  • Stückrath I, et al. (2002) Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation. Biotechnol Bioeng 77(1):61-72 PMID:11745174
    • SGD Paper
    • DOI full text
    • PubMed
  • Bakker BM, et al. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15-37 PMID:11152939
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Hoek P, et al. (2001) Human acylphosphatase cannot replace phosphoglycerate kinase in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 80(1):11-7 PMID:11761363
    • SGD Paper
    • DOI full text
    • PubMed
  • Bakker BM, et al. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730-7 PMID:10940011
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brachat A, et al. (2000) Analysis of deletion phenotypes and GFP fusions of 21 novel Saccharomyces cerevisiae open reading frames. Yeast 16(3):241-53 PMID:10649453
    • SGD Paper
    • DOI full text
    • PubMed
  • Luttik MA, et al. (2000) The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182(24):7007-13 PMID:11092862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Overkamp KM, et al. (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182(10):2823-30 PMID:10781551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Entian KD, et al. (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262(4-5):683-702 PMID:10628851
    • SGD Paper
    • DOI full text
    • PubMed
  • Flikweert MT, et al. (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66(1):42-50 PMID:10556793
    • SGD Paper
    • DOI full text
    • PubMed
  • Bojunga N, et al. (1998) The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol Gen Genet 260(5):453-61 PMID:9894915
    • SGD Paper
    • DOI full text
    • PubMed
  • Luttik MA, et al. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273(38):24529-34 PMID:9733747
    • SGD Paper
    • DOI full text
    • PubMed
  • de Jong-Gubbels P, et al. (1998) Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie Van Leeuwenhoek 74(4):253-63 PMID:10081585
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnston M, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387(6632 Suppl):87-90 PMID:9169871
    • SGD Paper
    • PMC full text
    • PubMed
  • Juhnke H, et al. (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252(4):456-64 PMID:8879247
    • SGD Paper
    • DOI full text
    • PubMed
  • Kötter P and Entian KD (1995) Cloning and analysis of the nuclear gene MRP-S9 encoding mitochondrial ribosomal protein S9 of Saccharomyces cerevisiae. Curr Genet 28(1):26-31 PMID:8536310
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (1995) CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J 14(24):6116-26 PMID:8557031
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dujon B, et al. (1994) Complete DNA sequence of yeast chromosome XI. Nature 369(6479):371-8 PMID:8196765
    • SGD Paper
    • DOI full text
    • PubMed
  • Feldmann H, et al. (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13(24):5795-809 PMID:7813418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top