AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Jentsch S
  • References

Author: Jentsch S


References 78 references


No citations for this author.

Download References (.nbib)

  • Capella M, et al. (2021) Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nat Commun 12(1):4918 PMID:34389719
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Capella M, et al. (2020) ESCRT recruitment by the S. cerevisiae inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. J Cell Sci 133(24) PMID:33262311
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee CW, et al. (2020) Selective autophagy degrades nuclear pore complexes. Nat Cell Biol 22(2):159-166 PMID:32029894
    • SGD Paper
    • DOI full text
    • PubMed
  • Wilfling F, et al. (2020) A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Mol Cell 80(5):764-778.e7 PMID:33207182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heckmann I, et al. (2019) A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Sci Rep 9(1):17914 PMID:31784551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Höpfler M, et al. (2019) Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO J 38(11) PMID:31015336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Paasch F, et al. (2018) Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 293(2):599-609 PMID:29183993
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karaduman R, et al. (2017) Error-Prone Splicing Controlled by the Ubiquitin Relative Hub1. Mol Cell 67(3):423-432.e4 PMID:28712727
    • SGD Paper
    • DOI full text
    • PubMed
  • Lademann CA, et al. (2017) The INO80 Complex Removes H2A.Z to Promote Presynaptic Filament Formation during Homologous Recombination. Cell Rep 19(7):1294-1303 PMID:28514650
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu K, et al. (2017) Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nat Cell Biol 19(6):732-739 PMID:28504708
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu K, et al. (2017) Pathway choice between proteasomal and autophagic degradation. Autophagy 13(10):1799-1800 PMID:28813181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Psakhye I and Jentsch S (2016) Identification of Substrates of Protein-Group SUMOylation. Methods Mol Biol 1475:219-31 PMID:27631809
    • SGD Paper
    • DOI full text
    • PubMed
  • Stingele J and Jentsch S (2015) DNA-protein crosslink repair. Nat Rev Mol Cell Biol 16(8):455-60 PMID:26130008
    • SGD Paper
    • DOI full text
    • PubMed
  • Stingele J, et al. (2015) DNA-protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem Sci 40(2):67-71 PMID:25496645
    • SGD Paper
    • DOI full text
    • PubMed
  • Ammon T, et al. (2014) The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. J Mol Cell Biol 6(4):312-23 PMID:24872507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gonzalez-Huici V, et al. (2014) DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 33(4):327-40 PMID:24473148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu K, et al. (2014) A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance. Autophagy 10(12):2381-2 PMID:25470352
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu K, et al. (2014) Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158(3):549-63 PMID:25042851
    • SGD Paper
    • DOI full text
    • PubMed
  • Stingele J, et al. (2014) A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158(2):327-338 PMID:24998930
    • SGD Paper
    • DOI full text
    • PubMed
  • Bergink S, et al. (2013) Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 15(5):526-32 PMID:23624404
    • SGD Paper
    • DOI full text
    • PubMed
  • Karras GI, et al. (2013) Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 49(3):536-46 PMID:23260657
    • SGD Paper
    • DOI full text
    • PubMed
  • Renkawitz J, et al. (2013) Monitoring homology search during DNA double-strand break repair in vivo. Mol Cell 50(2):261-72 PMID:23523370
    • SGD Paper
    • DOI full text
    • PubMed
  • Renkawitz J, et al. (2013) γH2AX spreading linked to homology search. Cell Cycle 12(16):2526-7 PMID:23907159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Psakhye I and Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151(4):807-820 PMID:23122649
    • SGD Paper
    • DOI full text
    • PubMed
  • Mishra SK, et al. (2011) Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474(7350):173-8 PMID:21614000
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van der Veen AG, et al. (2011) Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci U S A 108(5):1763-70 PMID:21209336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eichinger CS and Jentsch S (2010) Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc Natl Acad Sci U S A 107(25):11370-5 PMID:20534433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karras GI and Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141(2):255-67 PMID:20403322
    • SGD Paper
    • DOI full text
    • PubMed
  • Parnas O, et al. (2010) Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 29(15):2611-22 PMID:20571511
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kalocsay M, et al. (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33(3):335-43 PMID:19217407
    • SGD Paper
    • DOI full text
    • PubMed
  • Siepe D and Jentsch S (2009) Prolyl isomerase Pin1 acts as a switch to control the degree of substrate ubiquitylation. Nat Cell Biol 11(8):967-72 PMID:19597489
    • SGD Paper
    • DOI full text
    • PubMed
  • Braun S and Jentsch S (2007) SM-protein-controlled ER-associated degradation discriminates between different SNAREs. EMBO Rep 8(12):1176-82 PMID:18007658
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jentsch S and Rumpf S (2007) Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway? Trends Biochem Sci 32(1):6-11 PMID:17142044
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres-Rosell J, et al. (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9(8):923-31 PMID:17643116
    • SGD Paper
    • DOI full text
    • PubMed
  • Arakawa H, et al. (2006) A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4(11):e366 PMID:17105346
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moldovan GL, et al. (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23(5):723-32 PMID:16934511
    • SGD Paper
    • DOI full text
    • PubMed
  • Piwko W and Jentsch S (2006) Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat Struct Mol Biol 13(8):691-7 PMID:16845392
    • SGD Paper
    • DOI full text
    • PubMed
  • Rumpf S and Jentsch S (2006) Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol Cell 21(2):261-9 PMID:16427015
    • SGD Paper
    • DOI full text
    • PubMed
  • Sacher M, et al. (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8(11):1284-90 PMID:17013376
    • SGD Paper
    • DOI full text
    • PubMed
  • Pfander B, et al. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428-33 PMID:15931174
    • SGD Paper
    • DOI full text
    • PubMed
  • Richly H, et al. (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120(1):73-84 PMID:15652483
    • SGD Paper
    • DOI full text
    • PubMed
  • Sacher M, et al. (2005) Identification of SUMO-protein conjugates. Methods Enzymol 399:392-404 PMID:16338371
    • SGD Paper
    • DOI full text
    • PubMed
  • Rape M and Jentsch S (2004) Productive RUPture: activation of transcription factors by proteasomal processing. Biochim Biophys Acta 1695(1-3):209-13 PMID:15571816
    • SGD Paper
    • DOI full text
    • PubMed
  • Lüders J, et al. (2003) The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep 4(12):1169-74 PMID:14608371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Braun S, et al. (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21(4):615-21 PMID:11847109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoege C, et al. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135-41 PMID:12226657
    • SGD Paper
    • DOI full text
    • PubMed
  • Müller S, et al. (2001) SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2(3):202-10 PMID:11265250
    • SGD Paper
    • DOI full text
    • PubMed
  • Rape M, et al. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107(5):667-77 PMID:11733065
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoppe T, et al. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102(5):577-86 PMID:11007476
    • SGD Paper
    • DOI full text
    • PubMed
  • Ulrich HD and Jentsch S (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J 19(13):3388-97 PMID:10880451
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Koegl M, et al. (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96(5):635-44 PMID:10089879
    • SGD Paper
    • DOI full text
    • PubMed
  • Liakopoulos D, et al. (1999) Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc Natl Acad Sci U S A 96(10):5510-5 PMID:10318914
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Finley D, et al. (1998) Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci 23(7):244-5 PMID:9697412
    • SGD Paper
    • DOI full text
    • PubMed
  • Jentsch S and Ulrich HD (1998) Protein breakdown. Ubiquitous déjà vu. Nature 395(6700):321, 323 PMID:9759715
    • SGD Paper
    • DOI full text
    • PubMed
  • Liakopoulos D, et al. (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17(8):2208-14 PMID:9545234
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayer TU, et al. (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17(12):3251-7 PMID:9628862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwarz SE, et al. (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A 95(2):560-4 PMID:9435231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hateboer G, et al. (1996) mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect. J Biol Chem 271(42):25906-11 PMID:8824223
    • SGD Paper
    • DOI full text
    • PubMed
  • Matuschewski K, et al. (1996) Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J Biol Chem 271(5):2789-94 PMID:8576256
    • SGD Paper
    • DOI full text
    • PubMed
  • Barral Y, et al. (1995) G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev 9(4):399-409 PMID:7883165
    • SGD Paper
    • DOI full text
    • PubMed
  • Seufert W, et al. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78-81 PMID:7800043
    • SGD Paper
    • DOI full text
    • PubMed
  • Hartmann E, et al. (1994) Evolutionary conservation of components of the protein translocation complex. Nature 367(6464):654-7 PMID:8107851
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaiser P, et al. (1994) A human ubiquitin-conjugating enzyme homologous to yeast UBC8. J Biol Chem 269(12):8797-802 PMID:8132613
    • SGD Paper
    • PubMed
  • Chen P, et al. (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell 74(2):357-69 PMID:8393731
    • SGD Paper
    • DOI full text
    • PubMed
  • Jungmann J, et al. (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12(13):5051-6 PMID:8262047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jungmann J, et al. (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361(6410):369-71 PMID:8381213
    • SGD Paper
    • DOI full text
    • PubMed
  • Sommer T and Jentsch S (1993) A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365(6442):176-9 PMID:8396728
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhen M, et al. (1993) The ubc-2 gene of Caenorhabditis elegans encodes a ubiquitin-conjugating enzyme involved in selective protein degradation. Mol Cell Biol 13(3):1371-7 PMID:8441382
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seufert W and Jentsch S (1992) In vivo function of the proteasome in the ubiquitin pathway. EMBO J 11(8):3077-80 PMID:1322295
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Treier M, et al. (1992) Drosophila UbcD1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation. EMBO J 11(1):367-72 PMID:1310935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McGrath JP, et al. (1991) UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J 10(1):227-36 PMID:1989885
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seufert W and Jentsch S (1991) Yeast ubiquitin-conjugating enzymes involved in selective protein degradation are essential for cell viability. Acta Biol Hung 42(1-3):27-37 PMID:1844315
    • SGD Paper
    • PubMed
  • Seufert W and Jentsch S (1990) Nucleotide sequence of two tRNA(Arg)-tRNA(Asp) tandem genes linked to duplicated UBC genes in Saccharomyces cerevisiae. Nucleic Acids Res 18(6):1638 PMID:2183198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seufert W and Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543-50 PMID:2154373
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seufert W, et al. (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J 9(13):4535-41 PMID:2265617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goebl MG, et al. (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241(4871):1331-5 PMID:2842867
    • SGD Paper
    • DOI full text
    • PubMed
  • Jentsch S, et al. (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329(6135):131-4 PMID:3306404
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top