AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Hoyt MA
  • References

Author: Hoyt MA


References 44 references


No citations for this author.

Download References (.nbib)

  • Mishra PK, et al. (2016) Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell 27(14):2286-300 PMID:27226485
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park S, et al. (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512-6 PMID:23644457
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Erales J, et al. (2012) Functional asymmetries of proteasome translocase pore. J Biol Chem 287(22):18535-43 PMID:22493437
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Avunie-Masala R, et al. (2011) Phospho-regulation of kinesin-5 during anaphase spindle elongation. J Cell Sci 124(Pt 6):873-8 PMID:21378308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Henderson A, et al. (2011) Dependence of proteasome processing rate on substrate unfolding. J Biol Chem 286(20):17495-502 PMID:21454622
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerson-Gurwitz A, et al. (2009) Mid-anaphase arrest in S. cerevisiae cells eliminated for the function of Cin8 and dynein. Cell Mol Life Sci 66(2):301-13 PMID:19099194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217 PMID:18260085
    • SGD Paper
    • DOI full text
    • PubMed
  • Movshovich N, et al. (2008) Slk19-dependent mid-anaphase pause in kinesin-5-mutated cells. J Cell Sci 121(Pt 15):2529-39 PMID:18628309
    • SGD Paper
    • DOI full text
    • PubMed
  • Hildebrandt ER, et al. (2006) Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function. J Biol Chem 281(36):26004-13 PMID:16829678
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA (2006) Cell biology. Extinguishing a cell cycle checkpoint. Science 313(5787):624-5 PMID:16888129
    • SGD Paper
    • DOI full text
    • PubMed
  • Carvalho P, et al. (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6(6):815-29 PMID:15177030
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA (2004) A new checkpoint takes shape. Nat Cell Biol 6(9):801-3 PMID:15340443
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA, et al. (2003) Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278(14):12135-43 PMID:12562772
    • SGD Paper
    • DOI full text
    • PubMed
  • Sheeman B, et al. (2003) Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr Biol 13(5):364-72 PMID:12620184
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Li Z, et al. (2002) An easily dissociated 26 S proteasome catalyzes an essential ubiquitin-mediated protein degradation pathway in Trypanosoma brucei. J Biol Chem 277(18):15486-98 PMID:11854272
    • SGD Paper
    • DOI full text
    • PubMed
  • Hildebrandt ER and Hoyt MA (2001) Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. Mol Biol Cell 12(11):3402-16 PMID:11694576
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hildebrandt ER and Hoyt MA (2000) Mitotic motors in Saccharomyces cerevisiae. Biochim Biophys Acta 1496(1):99-116 PMID:10722880
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA (2000) Exit from mitosis: spindle pole power. Cell 102(3):267-70 PMID:10975516
    • SGD Paper
    • DOI full text
    • PubMed
  • Chial HJ, et al. (1999) Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy. Proc Natl Acad Sci U S A 96(18):10200-5 PMID:10468586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cottingham FR, et al. (1999) Novel roles for saccharomyces cerevisiae mitotic spindle motors. J Cell Biol 147(2):335-50 PMID:10525539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gheber L, et al. (1999) Motile properties of the kinesin-related Cin8p spindle motor extracted from Saccharomyces cerevisiae cells. J Biol Chem 274(14):9564-72 PMID:10092642
    • SGD Paper
    • DOI full text
    • PubMed
  • Farr KA and Hoyt MA (1998) Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol Cell Biol 18(5):2738-47 PMID:9566893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kahana JA, et al. (1998) The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B. Mol Biol Cell 9(7):1741-56 PMID:9658168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schott EJ and Hoyt MA (1998) Dominant alleles of Saccharomyces cerevisiae CDC20 reveal its role in promoting anaphase. Genetics 148(2):599-610 PMID:9504909
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cottingham FR and Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138(5):1041-53 PMID:9281582
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geiser JR, et al. (1997) Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol Biol Cell 8(6):1035-50 PMID:9201714
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA (1997) Eliminating all obstacles: regulated proteolysis in the eukaryotic cell cycle. Cell 91(2):149-51 PMID:9346231
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA, et al. (1997) Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability. Genetics 146(3):849-57 PMID:9215891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA, et al. (1997) Motor proteins of the eukaryotic cytoskeleton. Proc Natl Acad Sci U S A 94(24):12747-8 PMID:9398068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saunders W, et al. (1997) Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol Biol Cell 8(6):1025-33 PMID:9201713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA and Geiser JR (1996) Genetic analysis of the mitotic spindle. Annu Rev Genet 30:7-33 PMID:8982447
    • SGD Paper
    • DOI full text
    • PubMed
  • Saunders WS, et al. (1995) Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J Cell Biol 128(4):617-24 PMID:7860634
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manolson MF, et al. (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064-74 PMID:7514599
    • SGD Paper
    • PubMed
  • Roberts BT, et al. (1994) The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 14(12):8282-91 PMID:7969164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA, et al. (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135(1):35-44 PMID:8224825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1993) NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J Cell Biol 122(4):743-51 PMID:8349727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyt MA, et al. (1992) Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 118(1):109-20 PMID:1618897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manolson MF, et al. (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem 267(20):14294-303 PMID:1385813
    • SGD Paper
    • PubMed
  • Saunders WS and Hoyt MA (1992) Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70(3):451-8 PMID:1643659
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA, et al. (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66(3):507-17 PMID:1651171
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoyt MA, et al. (1990) Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol Cell Biol 10(1):223-34 PMID:2403635
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stearns T, et al. (1990) Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics 124(2):251-62 PMID:2407611
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stearns T, et al. (1990) ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol Cell Biol 10(12):6690-9 PMID:2123295
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huisman O, et al. (1987) A Tn10-lacZ-kanR-URA3 gene fusion transposon for insertion mutagenesis and fusion analysis of yeast and bacterial genes. Genetics 116(2):191-9 PMID:3038670
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top