AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Hollingsworth NM
  • References

Author: Hollingsworth NM


References 48 references


No citations for this author.

Download References (.nbib)

  • Weng Q, et al. (2024) An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. Genetics 228(1) PMID:38979911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nunez G, et al. (2023) Recruitment of the lipid kinase Mss4 to the meiotic spindle pole promotes prospore membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 34(4):ar33 PMID:36857169
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ziesel A, et al. (2022) Rad51-mediated interhomolog recombination during budding yeast meiosis is promoted by the meiotic recombination checkpoint and the conserved Pif1 helicase. PLoS Genet 18(12):e1010407 PMID:36508468
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park JS, et al. (2021) Genetic Dissection of Vps13 Regulation in Yeast Using Disease Mutations from Human Orthologs. Int J Mol Sci 22(12) PMID:34201352
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He W, et al. (2020) Regulated Proteolysis of MutSγ Controls Meiotic Crossing Over. Mol Cell 78(1):168-183.e5 PMID:32130890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sandhu R, et al. (2020) DNA Helicase Mph1FANCM Ensures Meiotic Recombination between Parental Chromosomes by Dissociating Precocious Displacement Loops. Dev Cell 53(4):458-472.e5 PMID:32386601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM and Gaglione R (2019) The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 65(3):631-641 PMID:30671596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Subramanian VV, et al. (2019) Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 10(1):970 PMID:30814509
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen X, et al. (2018) Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet 14(11):e1007832 PMID:30496175
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kniewel R, et al. (2017) Histone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity in Vivo. Genetics 207(4):1313-1333 PMID:28986445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prugar E, et al. (2017) Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1-Ndt80 Negative Feedback Loop. Genetics 206(1):497-512 PMID:28249986
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Callender TL, et al. (2016) Correction: Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genet 12(8):e1006283 PMID:27556498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Callender TL, et al. (2016) Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genet 12(8):e1006226 PMID:27483004
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park JS, et al. (2016) Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Mol Biol Cell 27(15):2435-49 PMID:27280386
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suhandynata RT, et al. (2016) Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics. PLoS One 11(5):e0155931 PMID:27214570
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen X, et al. (2015) Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLoS Biol 13(12):e1002329 PMID:26682552
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Y, et al. (2014) Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet 10(1):e1004005 PMID:24465215
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suhandynata R, et al. (2014) A method for sporulating budding yeast cells that allows for unbiased identification of kinase substrates using stable isotope labeling by amino acids in cell culture. G3 (Bethesda) 4(11):2125-35 PMID:25168012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lo HC, et al. (2012) Cdc7-Dbf4 is a gene-specific regulator of meiotic transcription in yeast. Mol Cell Biol 32(2):541-57 PMID:22106412
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lo HC and Hollingsworth NM (2011) Using the semi-synthetic epitope system to identify direct substrates of the meiosis-specific budding yeast kinase, Mek1. Methods Mol Biol 745:135-49 PMID:21660693
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Callender TL and Hollingsworth NM (2010) Mek1 suppression of meiotic double-strand break repair is specific to sister chromatids, chromosome autonomous and independent of Rec8 cohesin complexes. Genetics 185(3):771-82 PMID:20421598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM (2010) Phosphorylation and the creation of interhomolog bias during meiosis in yeast. Cell Cycle 9(3):436-7 PMID:20090416
    • SGD Paper
    • DOI full text
    • PubMed
  • Mok J, et al. (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci Signal 3(109):ra12 PMID:20159853
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2009) Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 36(3):393-404 PMID:19917248
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM (2008) Deconstructing meiosis one kinase at a time: polo pushes past pachytene. Genes Dev 22(19):2596-600 PMID:18832063
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lo HC, et al. (2008) Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol Biol Cell 19(11):4956-67 PMID:18768747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan L, et al. (2008) Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev 22(3):386-97 PMID:18245450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2007) Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol Cell Biol 27(15):5456-67 PMID:17526735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan L, et al. (2006) Chemical inactivation of cdc7 kinase in budding yeast results in a reversible arrest that allows efficient cell synchronization prior to meiotic recombination. Genetics 174(4):1767-74 PMID:17057233
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2005) Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol Biol Cell 16(12):5804-18 PMID:16221890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM and Brill SJ (2004) The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18(2):117-25 PMID:14752007
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ira G, et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431(7011):1011-7 PMID:15496928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Turney D, et al. (2004) Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168(4):2421-4 PMID:15611199
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan L, et al. (2004) Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast. Mol Biol Cell 15(1):11-23 PMID:14595109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de los Santos T, et al. (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164(1):81-94 PMID:12750322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de los Santos T, et al. (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159(4):1511-25 PMID:11779793
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suzuki T, et al. (2000) PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol 149(5):1039-52 PMID:10831608
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Woltering D, et al. (2000) Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol Cell Biol 20(18):6646-58 PMID:10958662
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de los Santos T and Hollingsworth NM (1999) Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J Biol Chem 274(3):1783-90 PMID:9880561
    • SGD Paper
    • DOI full text
    • PubMed
  • Kironmai KM, et al. (1998) DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae. Mol Cell Biol 18(3):1424-35 PMID:9488458
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM and Ponte L (1997) Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics 147(1):33-42 PMID:9286666
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pochart P, et al. (1997) Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem 272(48):30345-9 PMID:9374523
    • SGD Paper
    • DOI full text
    • PubMed
  • Hollingsworth NM, et al. (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9(14):1728-39 PMID:7622037
    • SGD Paper
    • DOI full text
    • PubMed
  • Friedman DB, et al. (1994) Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis. Genetics 136(2):449-64 PMID:8150275
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM and Johnson AD (1993) A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104. Genetics 133(4):785-97 PMID:8462842
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vershon AK, et al. (1992) Meiotic induction of the yeast HOP1 gene is controlled by positive and negative regulatory sites. Mol Cell Biol 12(9):3706-14 PMID:1508177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hollingsworth NM, et al. (1990) The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61(1):73-84 PMID:2107981
    • SGD Paper
    • DOI full text
    • PubMed
  • Hollingsworth NM and Byers B (1989) HOP1: a yeast meiotic pairing gene. Genetics 121(3):445-62 PMID:2653960
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top