AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Glickman MH
  • References

Author: Glickman MH


References 44 references


No citations for this author.

Download References (.nbib)

  • Bramasole L, et al. (2019) The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Biomolecules 9(9) PMID:31487956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ding Z, et al. (2019) Structural Snapshots of 26S Proteasome Reveal Tetraubiquitin-Induced Conformations. Mol Cell 73(6):1150-1161.e6 PMID:30792173
    • SGD Paper
    • DOI full text
    • PubMed
  • Chojnacki M, et al. (2017) Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chem Biol 24(4):443-457.e6 PMID:28330605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hovsepian J, et al. (2016) Studying Protein Ubiquitylation in Yeast. Methods Mol Biol 1449:117-42 PMID:27613031
    • SGD Paper
    • DOI full text
    • PubMed
  • Keren-Kaplan T, et al. (2016) Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun 7:12960 PMID:27698474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mansour W, et al. (2015) Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6. J Biol Chem 290(8):4688-4704 PMID:25389291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nowicka U, et al. (2015) DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin. Structure 23(3):542-557 PMID:25703377
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peters LZ, et al. (2015) The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 11(4):e1005178 PMID:25919710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu Z, et al. (2015) Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep 35(3) PMID:26182356
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krutauz D, et al. (2014) Extended ubiquitin species are protein-based DUB inhibitors. Nat Chem Biol 10(8):664-70 PMID:24997605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Livnat-Levanon N, et al. (2014) Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep 7(5):1371-1380 PMID:24857655
    • SGD Paper
    • DOI full text
    • PubMed
  • Bagola K, et al. (2013) Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol Cell 50(4):528-39 PMID:23665229
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakasone MA, et al. (2013) Mixed-linkage ubiquitin chains send mixed messages. Structure 21(5):727-40 PMID:23562397
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weberruss MH, et al. (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J 32(20):2697-707 PMID:23982732
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosenzweig R, et al. (2012) Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 287(18):14659-71 PMID:22318722
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Singh RK, et al. (2012) Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 11(12):1595-611 PMID:23105008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cohen MM, et al. (2011) Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J Cell Sci 124(Pt 9):1403-10 PMID:21502136
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Savulescu AF and Glickman MH (2011) Proteasome activator 200: the heat is on.. Mol Cell Proteomics 10(5):R110.006890 PMID:21389348
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu Z, et al. (2011) Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Mol Biol Cell 22(7):911-20 PMID:21289098
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ziv I, et al. (2011) A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 10(5):M111.009753 PMID:21427232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heo JM, et al. (2010) A stress-responsive system for mitochondrial protein degradation. Mol Cell 40(3):465-80 PMID:21070972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Effantin G, et al. (2009) Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J Mol Biol 386(5):1204-11 PMID:19361443
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pick E, et al. (2009) PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 35(3):260-4 PMID:19683491
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang D, et al. (2009) Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol Cell 36(6):1018-33 PMID:20064467
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cohen MM, et al. (2008) Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell 19(6):2457-64 PMID:18353967
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matiuhin Y, et al. (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32(3):415-25 PMID:18995839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rinaldi T, et al. (2008) Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol Biol Cell 19(3):1022-31 PMID:18172023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosenzweig R and Glickman MH (2008) Forging a proteasome alpha-ring with dedicated proteasome chaperones. Nat Struct Mol Biol 15(3):218-20 PMID:18319735
    • SGD Paper
    • DOI full text
    • PubMed
  • Rosenzweig R, et al. (2008) The central unit within the 19S regulatory particle of the proteasome. Nat Struct Mol Biol 15(6):573-80 PMID:18511945
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leggett DS, et al. (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57-70 PMID:15917626
    • SGD Paper
    • DOI full text
    • PubMed
  • Guterman A and Glickman MH (2004) Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci 5(3):201-11 PMID:15188770
    • SGD Paper
    • DOI full text
    • PubMed
  • Guterman A and Glickman MH (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 279(3):1729-38 PMID:14581483
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (2004) Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem J 381(Pt 1):275-85 PMID:15018611
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bajorek M, et al. (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13(13):1140-4 PMID:12842014
    • SGD Paper
    • DOI full text
    • PubMed
  • Maytal-Kivity V, et al. (2003) The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes. Int J Biochem Cell Biol 35(5):706-15 PMID:12672462
    • SGD Paper
    • DOI full text
    • PubMed
  • Maytal-Kivity V, et al. (2002) MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 3:28 PMID:12370088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maytal-Kivity V, et al. (2002) COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep 3(12):1215-21 PMID:12446563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fu H, et al. (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20(24):7096-107 PMID:11742986
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Köhler A, et al. (2001) The substrate translocation channel of the proteasome. Biochimie 83(3-4):325-32 PMID:11295493
    • SGD Paper
    • DOI full text
    • PubMed
  • Groll M, et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062-7 PMID:11062564
    • SGD Paper
    • DOI full text
    • PubMed
  • Glickman MH, et al. (1999) Functional analysis of the proteasome regulatory particle. Mol Biol Rep 26(1-2):21-8 PMID:10363642
    • SGD Paper
    • DOI full text
    • PubMed
  • Glickman MH, et al. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18(6):3149-62 PMID:9584156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Glickman MH, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615-23 PMID:9741626
    • SGD Paper
    • DOI full text
    • PubMed
  • Rubin DM, et al. (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17(17):4909-19 PMID:9724628
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top