AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Eckardt-Schupp F
  • References

Author: Eckardt-Schupp F


References 26 references


No citations for this author.

Download References (.nbib)

  • Friedl AA, et al. (2010) Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Mol Genet Genomics 284(4):231-42 PMID:20677012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steininger S, et al. (2010) A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair. Nucleic Acids Res 38(6):1853-65 PMID:20040573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moertl S, et al. (2008) Regulation of double-stranded DNA gap repair by the RAD6 pathway. DNA Repair (Amst) 7(11):1893-906 PMID:18722556
    • SGD Paper
    • DOI full text
    • PubMed
  • Steininger S, et al. (2008) Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast. DNA Repair (Amst) 7(9):1563-77 PMID:18599383
    • SGD Paper
    • DOI full text
    • PubMed
  • Kiechle M, et al. (2002) Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res 30(24):e136 PMID:12490727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cao JP, et al. (2001) TEL1 from Saccharomyces cerevisiae suppresses chromosome aberrations induced by ionizing radiation in ataxia-telangiectasia cells without affecting cell cycle checkpoints. Radiat Environ Biophys 40(4):309-15 PMID:11820740
    • SGD Paper
    • DOI full text
    • PubMed
  • Fellerhoff B, et al. (2000) Subtelomeric repeat amplification is associated with growth at elevated temperature in yku70 mutants of Saccharomyces cerevisiae. Genetics 154(3):1039-51 PMID:10757752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fritz E, et al. (2000) The yeast TEL1 gene partially substitutes for human ATM in suppressing hyperrecombination, radiation-induced apoptosis and telomere shortening in A-T cells. Mol Biol Cell 11(8):2605-16 PMID:10930457
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiechle M, et al. (2000) DNA integration by Ty integrase in yku70 mutant Saccharomyces cerevisiae cells. Mol Cell Biol 20(23):8836-44 PMID:11073984
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brendel M, et al. (1998) Low glutathione pools in the original pso3 mutant of Saccharomyces cerevisiae are responsible for its pleiotropic sensitivity phenotype. Curr Genet 33(1):4-9 PMID:9472073
    • SGD Paper
    • DOI full text
    • PubMed
  • Friedl AA, et al. (1998) Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Genetics 148(3):975-88 PMID:9539418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jha B, et al. (1998) A rapid method to monitor repair and mis-repair of DNA double-strand breaks by using cell extracts of the yeast Saccharomyces cerevisiae. Curr Genet 33(1):1-3 PMID:9472072
    • SGD Paper
    • DOI full text
    • PubMed
  • Liefshitz B, et al. (1998) Genetic interactions between mutants of the 'error-prone' repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 407(2):135-45 PMID:9637242
    • SGD Paper
    • DOI full text
    • PubMed
  • Ahne F, et al. (1997) The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 25(4):743-9 PMID:9016623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Siede W, et al. (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142(1):91-102 PMID:8770587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eckardt-Schupp F and Ahne F (1993) Bridge-building between mathematical theory and molecular biology: the REV2 gene as paradigm. Mutat Res 289(1):39-46 PMID:7689161
    • SGD Paper
    • DOI full text
    • PubMed
  • Jha B, et al. (1993) The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae. Curr Genet 23(5-6):402-7 PMID:8319296
    • SGD Paper
    • DOI full text
    • PubMed
  • Ahne F, et al. (1992) The REV2 gene of Saccharomyces cerevisiae: cloning and DNA sequence. Curr Genet 22(4):277-82 PMID:1394508
    • SGD Paper
    • DOI full text
    • PubMed
  • Berthe-Corti L, et al. (1992) Use of batch and fed-batch fermentation for studies on the variation of glutathione content and its influence on the genotoxicity of methyl-nitro-nitrosoguanidine in yeast. Mutagenesis 7(1):25-30 PMID:1635452
    • SGD Paper
    • DOI full text
    • PubMed
  • Geigl EM and Eckardt-Schupp F (1991) Repair of gamma ray-induced S1 nuclease hypersensitive sites in yeast depends on homologous mitotic recombination and a RAD18-dependent function. Curr Genet 20(1-2):33-7 PMID:1934115
    • SGD Paper
    • DOI full text
    • PubMed
  • Ahne F, et al. (1990) Molecular analysis of the REV2 gene of Saccharomyces cerevisiae--a review. Radiat Environ Biophys 29(4):293-301 PMID:2281135
    • SGD Paper
    • DOI full text
    • PubMed
  • Kistler M, et al. (1990) Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae. Mutagenesis 5(1):39-44 PMID:2184310
    • SGD Paper
    • DOI full text
    • PubMed
  • Eckardt-Schupp F, et al. (1987) The RAD24 (= Rs1) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair. Genetics 115(1):83-90 PMID:3549445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Siede W and Eckardt-Schupp F (1987) Reply: u.v. mutagenesis in yeast in Escherichia coli. Mutagenesis 2(4):315 PMID:3325763
    • SGD Paper
    • DOI full text
    • PubMed
  • Siede W and Eckardt-Schupp F (1986) A mismatch repair-based model can explain some features of u.v. mutagenesis in yeast. Mutagenesis 1(6):471-4 PMID:3331686
    • SGD Paper
    • DOI full text
    • PubMed
  • Siede W and Eckardt-Schupp F (1986) DNA repair genes of Saccharomyces cerevisiae: complementing rad4 and rev2 mutations by plasmids which cannot be propagated in Escherichia coli. Curr Genet 11(3):205-10 PMID:3329049
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top