AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Colombo S
  • References

Author: Colombo S


References 28 references


No citations for this author.

Download References (.nbib)

  • Bonomelli B, et al. (2023) Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 597(2):298-308 PMID:36527174
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2022) Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 92:110262 PMID:35093533
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni MD, et al. (2020) In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase. Apoptosis 25(9-10):686-696 PMID:32666259
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonomelli B, et al. (2020) Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 523(1):130-134 PMID:31837801
    • SGD Paper
    • DOI full text
    • PubMed
  • Baroni MD, et al. (2018) Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb Cell 5(7):344-356 PMID:29992130
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colombo S, et al. (2017) Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochem Biophys Res Commun 487(3):594-599 PMID:28433631
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895787
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2015) The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 14(15):2429-38 PMID:26046481
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colombo S and Martegani E (2014) Methods to study the Ras2 protein activation state and the subcellular localization of Ras-GTP in Saccharomyces cerevisiae. Methods Mol Biol 1120:391-405 PMID:24470038
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2014) Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie. Cell Signal 26(5):1147-54 PMID:24518043
    • SGD Paper
    • DOI full text
    • PubMed
  • Amigoni L, et al. (2013) Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2013:678473 PMID:24089630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Broggi S, et al. (2013) Nuclear Ras2-GTP controls invasive growth in Saccharomyces cerevisiae. PLoS One 8(11):e79274 PMID:24244466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Broggi S, et al. (2013) Live-cell imaging of endogenous Ras-GTP shows predominant Ras activation at the plasma membrane and in the nucleus in Saccharomyces cerevisiae. Int J Biochem Cell Biol 45(2):384-94 PMID:23127800
    • SGD Paper
    • DOI full text
    • PubMed
  • Besozzi D, et al. (2012) The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J Bioinform Syst Biol 2012(1):10 PMID:22818197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pescini D, et al. (2012) Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnol Adv 30(1):99-107 PMID:21741466
    • SGD Paper
    • DOI full text
    • PubMed
  • Leadsham JE, et al. (2009) Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122(Pt 5):706-15 PMID:19208759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cazzaniga P, et al. (2008) Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J Biotechnol 133(3):377-85 PMID:18023904
    • SGD Paper
    • DOI full text
    • PubMed
  • Paiardi C, et al. (2007) The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. FEMS Yeast Res 7(8):1270-5 PMID:17727662
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Design and characterization of a new class of inhibitors of ras activation. Ann N Y Acad Sci 1030:52-61 PMID:15659780
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279(45):46715-22 PMID:15339905
    • SGD Paper
    • DOI full text
    • PubMed
  • Rudoni S, et al. (2001) Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochim Biophys Acta 1538(2-3):181-9 PMID:11336789
    • SGD Paper
    • DOI full text
    • PubMed
  • Dumortier F, et al. (2000) A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K176M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. Int J Food Microbiol 55(1-3):103-7 PMID:10791726
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM, et al. (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26(9-10):819-825 PMID:10862891
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Dijck P, et al. (2000) Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55(1-3):187-92 PMID:10791742
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Dijck P, et al. (2000) A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. J Mol Microbiol Biotechnol 2(4):521-30 PMID:11075928
    • SGD Paper
    • PubMed
  • Vanhalewyn M, et al. (1999) A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Mol Microbiol 33(2):363-76 PMID:10411752
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanoni M, et al. (1999) Characterization and properties of dominant-negative mutants of the ras-specific guanine nucleotide exchange factor CDC25(Mm). J Biol Chem 274(51):36656-62 PMID:10593969
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17(12):3326-41 PMID:9628870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top