AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Cabiscol E
  • References

Author: Cabiscol E


References 24 references


No citations for this author.

Download References (.nbib)

  • Rodríguez Colman MJ, et al. (2020) Mitochondrial Localization of the Yeast Forkhead Factor Hcm1. Int J Mol Sci 21(24) PMID:33339134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guerrero-Gómez D, et al. (2019) Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ 26(9):1545-1565 PMID:30770874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vall-Llaura N, et al. (2019) Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity. Redox Biol 24:101229 PMID:31153040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vall-Llaura N, et al. (2016) Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance. Free Radic Biol Med 96:45-56 PMID:27085841
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-Cermeño A, et al. (2013) Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. Biochim Biophys Acta 1833(12):3326-3337 PMID:24100161
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Colman MJ, et al. (2013) The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases. Biochim Biophys Acta 1833(8):2004-15 PMID:23481038
    • SGD Paper
    • DOI full text
    • PubMed
  • Gomez-Pastor R, et al. (2012) Correction: Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 11(1):31
    • SGD Paper
  • Gómez-Pastor R, et al. (2012) Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microb Cell Fact 11:4 PMID:22230188
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tamarit J, et al. (2012) Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J Proteomics 75(12):3778-88 PMID:22579746
    • SGD Paper
    • DOI full text
    • PubMed
  • Sorolla MA, et al. (2011) Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Arch Biochem Biophys 510(1):27-34 PMID:21513696
    • SGD Paper
    • DOI full text
    • PubMed
  • Gómez-Pastor R, et al. (2010) Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9:9 PMID:20152017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez-Pastor R, et al. (2010) Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Res 10(7):870-84 PMID:20738407
    • SGD Paper
    • DOI full text
    • PubMed
  • Irazusta V, et al. (2010) Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage. Free Radic Biol Med 48(3):411-20 PMID:19932164
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-Cermeño A, et al. (2010) Frataxin depletion in yeast triggers up-regulation of iron transport systems before affecting iron-sulfur enzyme activities. J Biol Chem 285(53):41653-64 PMID:20956517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Herrero E, et al. (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780(11):1217-35 PMID:18178164
    • SGD Paper
    • DOI full text
    • PubMed
  • Irazusta V, et al. (2008) Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins. Free Radic Biol Med 44(9):1712-23 PMID:18280258
    • SGD Paper
    • DOI full text
    • PubMed
  • Reverter-Branchat G, et al. (2007) Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology (Reading) 153(Pt 11):3667-3676 PMID:17975074
    • SGD Paper
    • DOI full text
    • PubMed
  • Irazusta V, et al. (2006) Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia. J Biol Chem 281(18):12227-32 PMID:16510442
    • SGD Paper
    • DOI full text
    • PubMed
  • Reverter-Branchat G, et al. (2004) Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J Biol Chem 279(30):31983-9 PMID:15166233
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamarit J, et al. (2003) Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem 278(28):25745-51 PMID:12730244
    • SGD Paper
    • DOI full text
    • PubMed
  • Cabiscol E, et al. (2002) Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277(46):44531-8 PMID:12200437
    • SGD Paper
    • DOI full text
    • PubMed
  • Cabiscol E, et al. (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275(35):27393-8 PMID:10852912
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Manzaneque MT, et al. (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19(12):8180-90 PMID:10567543
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top