AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Breunig KD
  • References

Author: Breunig KD


References 31 references


No citations for this author.

Download References (.nbib)

  • Krutyhołowa R, et al. (2020) Fungal Kti12 proteins display unusual linker regions and unique ATPase p-loops. Curr Genet 66(4):823-833 PMID:32236652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reinhardt-Tews A, et al. (2020) A double role of the Gal80 N terminus in activation of transcription by Gal4p. Life Sci Alliance 3(12) PMID:33037058
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dauden MI, et al. (2019) Molecular basis of tRNA recognition by the Elongator complex. Sci Adv 5(7):eaaw2326 PMID:31309145
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krutyhołowa R, et al. (2019) Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator. Nucleic Acids Res 47(9):4814-4830 PMID:30916349
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dauden MI, et al. (2017) Architecture of the yeast Elongator complex. EMBO Rep 18(2):264-279 PMID:27974378
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehlgarten C, et al. (2017) Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins (Basel) 9(9) PMID:28872616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Glatt S, et al. (2015) Structure of the Kti11/Kti13 heterodimer and its double role in modifications of tRNA and eukaryotic elongation factor 2. Structure 23(1):149-160 PMID:25543256
    • SGD Paper
    • DOI full text
    • PubMed
  • Mehlgarten C, et al. (2015) Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts. PLoS One 10(10):e0139464 PMID:26440109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blüher D, et al. (2014) An ancient oxidoreductase making differential use of its cofactors. Biol Chem 395(7-8):855-69 PMID:25003388
    • SGD Paper
    • DOI full text
    • PubMed
  • Mates N, et al. (2014) Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis. Mol Cell Proteomics 13(3):860-75 PMID:24434903
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehlgarten C, et al. (2010) Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 76(5):1082-94 PMID:20398216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehlgarten C, et al. (2009) Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 73(5):869-81 PMID:19656297
    • SGD Paper
    • DOI full text
    • PubMed
  • Anders A, et al. (2006) The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J Biol Chem 281(39):29337-48 PMID:16867978
    • SGD Paper
    • DOI full text
    • PubMed
  • Gbelska Y, et al. (2006) Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 6(3):345-55 PMID:16630275
    • SGD Paper
    • DOI full text
    • PubMed
  • Wiedemuth C and Breunig KD (2005) Role of Snf1p in regulation of intracellular sorting of the lactose and galactose transporter Lac12p in Kluyveromyces lactis. Eukaryot Cell 4(4):716-21 PMID:15821131
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Charbon G, et al. (2004) Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis. Mol Cell Biol 24(10):4083-91 PMID:15121831
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bar D, et al. (2003) The unique hexokinase of Kluyveromyces lactis. Molecular and functional characterization and evaluation of a role in glucose signaling. J Biol Chem 278(41):39280-6 PMID:12882981
    • SGD Paper
    • DOI full text
    • PubMed
  • Fichtner L, et al. (2002) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43(3):783-91 PMID:11929532
    • SGD Paper
    • DOI full text
    • PubMed
  • Frohloff F, et al. (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20(8):1993-2003 PMID:11296232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milkowski C, et al. (2001) Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol 183(18):5223-9 PMID:11514503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Georis I, et al. (2000) Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Mol Gen Genet 264(1-2):193-203 PMID:11016849
    • SGD Paper
    • DOI full text
    • PubMed
  • Georis I, et al. (1999) Glucose repression of the Kluyveromyces lactis invertase gene KlINV1 does not require Mig1p. Mol Gen Genet 261(4-5):862-70 PMID:10394924
    • SGD Paper
    • DOI full text
    • PubMed
  • Zenke FT, et al. (1999) Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis. Biol Chem 380(4):419-30 PMID:10355628
    • SGD Paper
    • DOI full text
    • PubMed
  • Zenke FT, et al. (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272(5268):1662-5 PMID:8658143
    • SGD Paper
    • DOI full text
    • PubMed
  • Freire-Picos MA, et al. (1995) Regulation of cytochrome c expression in the aerobic respiratory yeast Kluyveromyces lactis. FEBS Lett 360(1):39-42 PMID:7875297
    • SGD Paper
    • DOI full text
    • PubMed
  • Zachariae W and Breunig KD (1993) Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation. Mol Cell Biol 13(5):3058-66 PMID:8474461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zachariae W, et al. (1993) Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (K1GAL4) [corrected]. Nucleic Acids Res 21(1):69-77 PMID:8441621
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zenke FT, et al. (1993) Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol 13(12):7566-76 PMID:8246973
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Breunig KD and Kuger P (1987) Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site. Mol Cell Biol 7(12):4400-6 PMID:2830492
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ruzzi M, et al. (1987) Positive regulation of the beta-galactosidase gene from Kluyveromyces lactis is mediated by an upstream activation site that shows homology to the GAL upstream activation site of Saccharomyces cerevisiae. Mol Cell Biol 7(3):991-7 PMID:3104772
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reipen G, et al. (1982) Non-selective transformation of Saccharomyces cerevisiae. Curr Genet 6(3):189-93 PMID:24186544
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top