Schoondermark-Stolk SA, et al. (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237-46 PMID:16041576
Schoondermark-Stolk SA, et al. (2005) Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res 5(8):757-66 PMID:15851104
Thomassen YE, et al. (2005) Specific production rate of VHH antibody fragments by Saccharomyces cerevisiae is correlated with growth rate, independent of nutrient limitation. J Biotechnol 118(3):270-7 PMID:15979755
Paalman JW, et al. (2003) Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae. FEMS Yeast Res 3(3):261-8 PMID:12689634
Sagt CM, et al. (2002) Impaired cutinase secretion in Saccharomyces cerevisiae induces irregular endoplasmic reticulum (ER) membrane proliferation, oxidative stress, and ER-associated degradation. Appl Environ Microbiol 68(5):2155-60 PMID:11976084
Sagt CM, et al. (2000) Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl Environ Microbiol 66(11):4940-4 PMID:11055947
Silljé HH, et al. (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181(2):396-400 PMID:9882651
Meijer MM, et al. (1998) Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273(37):24102-7 PMID:9727030
Sagt CM, et al. (1998) Impaired secretion of a hydrophobic cutinase by Saccharomyces cerevisiae correlates with an increased association with immunoglobulin heavy-chain binding protein (BiP). Appl Environ Microbiol 64(1):316-24 PMID:9435084
Ter Schure EG, et al. (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology (Reading) 144 ( Pt 5):1451-1462 PMID:9611819
Silljé HH, et al. (1997) Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J Bacteriol 179(21):6560-5 PMID:9352900
Silljé HH, et al. (1996) The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport. Microbiology (Reading) 142 ( Pt 7):1765-73 PMID:8757740
Ter Schure EG, et al. (1995) Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. Microbiology (Reading) 141 ( Pt 5):1101-1108 PMID:7773405
Ter Schure EG, et al. (1995) Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. Microbiology (Reading) 141(8):2019 PMID:33820123
ter Schure EG, et al. (1995) The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 177(22):6672-5 PMID:7592450