AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Bankaitis VA
  • References

Author: Bankaitis VA


References 92 references


No citations for this author.

Download References (.nbib)

  • Yu X, et al. (2025) A budding yeast-centric view of oxysterol binding protein family function. Adv Biol Regul 95:101061 PMID:39613716
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen XR, et al. (2023) Mechanisms by which small molecules of diverse chemotypes arrest Sec14 lipid transfer activity. J Biol Chem 299(2):102861 PMID:36603766
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (2022) New strategies for combating fungal infections: Inhibiting inositol lipid signaling by targeting Sec14 phosphatidylinositol transfer proteins. Adv Biol Regul 84:100891 PMID:35240534
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maitra N, et al. (2022) Translational control of lipogenesis links protein synthesis and phosphoinositide signaling with nuclear division in Saccharomyces cerevisiae. Genetics 220(1) PMID:34849864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugiura T, et al. (2021) Biophysical parameters of the Sec14 phospholipid exchange cycle - Effect of lipid packing in membranes. Biochim Biophys Acta Biomembr 1863(1):183450 PMID:32828847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khan D, et al. (2020) A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. Elife 9 PMID:32780017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lete MG, et al. (2020) Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 78:100740 PMID:32992233
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tripathi A, et al. (2020) Correction: Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities. J Biol Chem 295(5):1368 PMID:32005645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Y, et al. (2020) Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase. J Cell Biol 219(5) PMID:32303746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugiura T, et al. (2019) Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophys J 116(1):92-103 PMID:30580923
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tripathi A, et al. (2019) Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities. J Biol Chem 294(50):19081-19098 PMID:31690622
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eisenberg-Bord M, et al. (2018) Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J Cell Biol 217(1):269-282 PMID:29187527
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang J, et al. (2018) A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Dev Cell 44(3):378-391.e5 PMID:29396115
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pries V, et al. (2018) Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 25(3):279-290.e7 PMID:29307839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roy KR, et al. (2018) Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 36(6):512-520 PMID:29734294
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blank HM, et al. (2017) Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J 36(4):487-502 PMID:28057705
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang J, et al. (2016) Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell 27(14):2317-30 PMID:27193303
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khan D, et al. (2016) Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors. J Lipid Res 57(4):650-62 PMID:26921357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grabon A, et al. (2015) Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochim Biophys Acta 1851(6):724-35 PMID:25592381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee AY, et al. (2014) Mapping the cellular response to small molecules using chemogenomic fitness signatures. Science 344(6180):208-11 PMID:24723613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nile AH, et al. (2014) PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nat Chem Biol 10(1):76-84 PMID:24292071
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ren J, et al. (2014) A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol Biol Cell 25(5):712-27 PMID:24403601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tripathi A, et al. (2014) Sec14-like phosphatidylinositol-transfer proteins and diversification of phosphoinositide signalling outcomes. Biochem Soc Trans 42(5):1383-8 PMID:25233419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (2012) Thoughts on Sec14-like nanoreactors and phosphoinositide signaling. Adv Biol Regul 52(1):115-21 PMID:22776890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Davison JM, et al. (2012) Devising powerful genetics, biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species. Methods Cell Biol 108:249-302 PMID:22325607
    • SGD Paper
    • DOI full text
    • PubMed
  • Mousley CJ, et al. (2012) A sterol-binding protein integrates endosomal lipid metabolism with TOR signaling and nitrogen sensing. Cell 148(4):702-15 PMID:22341443
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mousley CJ, et al. (2012) Sec14 like PITPs couple lipid metabolism with phosphoinositide synthesis to regulate Golgi functionality. Subcell Biochem 59:271-87 PMID:22374094
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghosh R and Bankaitis VA (2011) Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors 37(4):290-308 PMID:21915936
    • SGD Paper
    • DOI full text
    • PubMed
  • Murphy TR, et al. (2011) Phosphatidylinositol synthase is required for lens structural integrity and photoreceptor cell survival in the zebrafish eye. Exp Eye Res 93(4):460-74 PMID:21722635
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ren J, et al. (2011) Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily. Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 10):1239-43 PMID:22102037
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schaaf G, et al. (2011) Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution. Mol Biol Cell 22(6):892-905 PMID:21248202
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soper JH, et al. (2011) Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J Mol Neurosci 43(3):391-405 PMID:20890676
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (2010) The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci 35(3):150-60 PMID:19926291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mousley CJ, et al. (2010) Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells. Adv Enzyme Regul 50(1):339-48 PMID:20005891
    • SGD Paper
    • DOI full text
    • PubMed
  • Mousley CJ, et al. (2008) Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 19(11):4785-803 PMID:18753406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schaaf G, et al. (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 29(2):191-206 PMID:18243114
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (2007) Phosphatidylinositol transfer proteins and functional specification of lipid signaling pools. Adv Enzyme Regul 47:27-40 PMID:17335879
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Howe AG, et al. (2007) Regulation of phosphoinositide levels by the phospholipid transfer protein Sec14p controls Cdc42p/p21-activated kinase-mediated cell cycle progression at cytokinesis. Eukaryot Cell 6(10):1814-23 PMID:17601877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mousley CJ, et al. (2007) The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta 1771(6):727-36 PMID:17512778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ryan MM, et al. (2007) Conformational dynamics of the major yeast phosphatidylinositol transfer protein sec14p: insight into the mechanisms of phospholipid exchange and diseases of sec14p-like protein deficiencies. Mol Biol Cell 18(5):1928-42 PMID:17344474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smirnova TI, et al. (2007) Local polarity and hydrogen bonding inside the Sec14p phospholipid-binding cavity: high-field multi-frequency electron paramagnetic resonance studies. Biophys J 92(10):3686-95 PMID:17325006
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ile KE, et al. (2006) Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling. Nat Chem Biol 2(11):576-83 PMID:17051233
    • SGD Paper
    • DOI full text
    • PubMed
  • Mousley CJ, et al. (2006) Sec14p-like proteins regulate phosphoinositide homoeostasis and intracellular protein and lipid trafficking in yeast. Biochem Soc Trans 34(Pt 3):346-50 PMID:16709158
    • SGD Paper
    • DOI full text
    • PubMed
  • Phillips SE, et al. (2006) The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol 41(1):21-49 PMID:16455519
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaaf G, et al. (2006) Crystallization and preliminary X-ray diffraction analysis of phospholipid-bound Sfh1p, a member of the Saccharomyces cerevisiae Sec14p-like phosphatidylinositol transfer protein family. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt 11):1156-60 PMID:17077504
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Slessareva JE, et al. (2006) Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 126(1):191-203 PMID:16839886
    • SGD Paper
    • DOI full text
    • PubMed
  • Smirnova TI, et al. (2006) The chemistry of phospholipid binding by the Saccharomyces cerevisiae phosphatidylinositol transfer protein Sec14p as determined by EPR spectroscopy. J Biol Chem 281(46):34897-908 PMID:16997918
    • SGD Paper
    • DOI full text
    • PubMed
  • Bankaitis VA, et al. (2005) Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae. Adv Enzyme Regul 45:155-70 PMID:16118014
    • SGD Paper
    • DOI full text
    • PubMed
  • Routt SM, et al. (2005) Nonclassical PITPs activate PLD via the Stt4p PtdIns-4-kinase and modulate function of late stages of exocytosis in vegetative yeast. Traffic 6(12):1157-72 PMID:16262726
    • SGD Paper
    • DOI full text
    • PubMed
  • Routt SM and Bankaitis VA (2004) Biological functions of phosphatidylinositol transfer proteins. Biochem Cell Biol 82(1):254-62 PMID:15052341
    • SGD Paper
    • DOI full text
    • PubMed
  • Alb JG, et al. (2002) Genetic ablation of phosphatidylinositol transfer protein function in murine embryonic stem cells. Mol Biol Cell 13(3):739-54 PMID:11907258
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA (2002) Cell biology. Slick recruitment to the Golgi. Science 295(5553):290-1 PMID:11786634
    • SGD Paper
    • DOI full text
    • PubMed
  • Li X, et al. (2002) Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J Cell Biol 157(1):63-77 PMID:11916983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yanagisawa LL, et al. (2002) Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Sec14p-dependent Golgi secretory function in yeast. Mol Biol Cell 13(7):2193-206 PMID:12134061
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kapranov P, et al. (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13(6):1369-82 PMID:11402166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nakase Y, et al. (2001) The Schizosaccharomyces pombe spo20(+) gene encoding a homologue of Saccharomyces cerevisiae Sec14 plays an important role in forespore membrane formation. Mol Biol Cell 12(4):901-17 PMID:11294895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie Z, et al. (2001) Evidence for an intrinsic toxicity of phosphatidylcholine to Sec14p-dependent protein transport from the yeast Golgi complex. Mol Biol Cell 12(4):1117-29 PMID:11294911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huijbregts RP, et al. (2000) Lipid metabolism and regulation of membrane trafficking. Traffic 1(3):195-202 PMID:11208102
    • SGD Paper
    • DOI full text
    • PubMed
  • Li X, et al. (2000) Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast. Biochim Biophys Acta 1486(1):55-71 PMID:10856713
    • SGD Paper
    • DOI full text
    • PubMed
  • Li X, et al. (2000) Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell 11(6):1989-2005 PMID:10848624
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nemoto Y, et al. (2000) Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem 275(44):34293-305 PMID:10887188
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu WI, et al. (2000) A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14. J Biol Chem 275(19):14446-56 PMID:10799527
    • SGD Paper
    • DOI full text
    • PubMed
  • Kochendörfer KU, et al. (1999) Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. EMBO J 18(6):1506-15 PMID:10075922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Phillips SE, et al. (1999) Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 4(2):187-97 PMID:10488334
    • SGD Paper
    • DOI full text
    • PubMed
  • Rivas MP, et al. (1999) Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to "bypass Sec14p" and inositol auxotrophy. Mol Biol Cell 10(7):2235-50 PMID:10397762
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hübner S, et al. (1998) Enhancement of phosphoinositide 3-kinase (PI 3-kinase) activity by membrane curvature and inositol-phospholipid-binding peptides. Eur J Biochem 258(2):846-53 PMID:9874255
    • SGD Paper
    • DOI full text
    • PubMed
  • Jones SM, et al. (1998) A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network. J Biol Chem 273(17):10349-54 PMID:9553090
    • SGD Paper
    • DOI full text
    • PubMed
  • Kearns MA, et al. (1998) Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J 17(14):4004-17 PMID:9670016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sha B, et al. (1998) Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391(6666):506-10 PMID:9461221
    • SGD Paper
    • DOI full text
    • PubMed
  • Simon JP, et al. (1998) An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A 95(19):11181-6 PMID:9736710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie Z, et al. (1998) Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci U S A 95(21):12346-51 PMID:9770489
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kearns BG, et al. (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387(6628):101-5 PMID:9139830
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milligan SC, et al. (1997) The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J Cell Biol 139(2):351-63 PMID:9334340
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sha B, et al. (1997) Crystallization and preliminary X-ray diffraction studies of the Saccharomyces cerevisiae phospholipid-transfer protein Sec14p. Acta Crystallogr D Biol Crystallogr 53(Pt 6):784-6 PMID:15299870
    • SGD Paper
    • DOI full text
    • PubMed
  • Alb JG, et al. (1996) Phospholipid metabolism and membrane dynamics. Curr Opin Cell Biol 8(4):534-41 PMID:8791444
    • SGD Paper
    • DOI full text
    • PubMed
  • Fang M, et al. (1996) Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J 15(23):6447-59 PMID:8978672
    • SGD Paper
    • PMC full text
    • PubMed
  • Kagiwada S, et al. (1996) The yeast BSD2-1 mutation influences both the requirement for phosphatidylinositol transfer protein function and derepression of phospholipid biosynthetic gene expression in yeast. Genetics 143(2):685-97 PMID:8725219
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayinger P, et al. (1995) Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation. J Cell Biol 131(6 Pt 1):1377-86 PMID:8522598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Skinner HB, et al. (1995) The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc Natl Acad Sci U S A 92(1):112-6 PMID:7816798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lopez MC, et al. (1994) A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 125(1):113-27 PMID:8138566
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McGee TP, et al. (1994) A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J Cell Biol 124(3):273-87 PMID:8294512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McGee TP, et al. (1994) Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae. J Bacteriol 176(22):6861-8 PMID:7961445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Whitters EA, et al. (1994) Purification and characterization of a late Golgi compartment from Saccharomyces cerevisiae. J Biol Chem 269(45):28106-17 PMID:7961747
    • SGD Paper
    • PubMed
  • Skinner HB, et al. (1993) Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J 12(12):4775-84 PMID:8223486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Whitters EA, et al. (1993) SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122(1):79-94 PMID:8314848
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cleves AE, et al. (1991) Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64(4):789-800 PMID:1997207
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (1990) An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347(6293):561-2 PMID:2215682
    • SGD Paper
    • DOI full text
    • PubMed
  • Salama SR, et al. (1990) Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae. J Bacteriol 172(8):4510-21 PMID:2198263
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankaitis VA, et al. (1989) The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J Cell Biol 108(4):1271-81 PMID:2466847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cleves AE, et al. (1989) Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol 109(6 Pt 1):2939-50 PMID:2687291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson LM, et al. (1987) Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48(5):875-85 PMID:3028648
    • SGD Paper
    • DOI full text
    • PubMed
  • Bankaitis VA, et al. (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 83(23):9075-9 PMID:3538017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top