Gutiérrez-Santiago F, et al. (2024) Maf1 phosphorylation is regulated through the action of prefoldin-like Bud27 on PP4 phosphatase in Saccharomyces cerevisiae. Nucleic Acids Res 52(12):7081-7095 PMID:38864693
Nguyen PQ, et al. (2023) Structural basis of Ty1 integrase tethering to RNA polymerase III for targeted retrotransposon integration. Nat Commun 14(1):1729 PMID:36977686
Barkova A, et al. (2022) A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 13(1):26 PMID:36401307
Nguyen PQ, et al. (2021) Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity in vitro. J Biol Chem 297(4):101093 PMID:34416236
Asif-Laidin A, et al. (2020) A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes. EMBO J 39(17):e104337 PMID:32677087
Nguyen NT, et al. (2015) Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 556(1):51-60 PMID:25086199
Acker J, et al. (2014) Sub1 and Maf1, two effectors of RNA polymerase III, are involved in the yeast quiescence cycle. PLoS One 9(12):e114587 PMID:25531541
Tavenet A, et al. (2009) Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 106(34):14265-70 PMID:19706510
Ghavi-Helm Y, et al. (2008) Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev 22(14):1934-47 PMID:18628399
Ducrot C, et al. (2006) Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 281(17):11685-92 PMID:16517597
Landrieux E, et al. (2006) A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 25(1):118-28 PMID:16362040
Mylona A, et al. (2006) Expression, proteolytic analysis, reconstitution, and crystallization of the tau60/tau91 subcomplex of yeast TFIIIC. Protein Expr Purif 45(2):255-61 PMID:16115780
Mylona A, et al. (2006) Structure of the tau60/Delta tau91 subcomplex of yeast transcription factor IIIC: insights into preinitiation complex assembly. Mol Cell 24(2):221-32 PMID:17052456
Ferrari R, et al. (2004) Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci U S A 101(37):13442-7 PMID:15347814
Jourdain S, et al. (2003) The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 278(12):10450-7 PMID:12533520
Dumay-Odelot H, et al. (2002) Multiple roles of the tau131 subunit of yeast transcription factor IIIC (TFIIIC) in TFIIIB assembly. Mol Cell Biol 22(1):298-308 PMID:11739742
Peyroche A, et al. (1999) Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3(3):275-85 PMID:10198630
Dubrovskaya V, et al. (1996) Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. EMBO J 15(14):3702-12 PMID:8758937
Shpakovski GV, et al. (1995) Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae. Mol Cell Biol 15(9):4702-10 PMID:7651387